Fabrication, characterization and evaluation of a new designed botulinum toxin-cell penetrating peptide nanoparticulate complex

Bermann PE. Aging skin: causes, treatments, and prevention. Nurs Clin North Am. 2007;42(3):485–500. https://doi.org/10.1016/j.cnur.2007.05.001.

Article  PubMed  Google Scholar 

Baumann L. Skin ageing and its treatment. J Pathol. 2007;211(2):241–51. https://doi.org/10.1002/path.2098.

Article  CAS  PubMed  Google Scholar 

Kopera D. Botulinum toxin historical aspects: from food poisoning to pharmaceutical. Int J Dermatol. 2011;50(8):976–80. https://doi.org/10.1111/j.1365-4632.2010.04821.

Article  CAS  PubMed  Google Scholar 

Carruthers J, Carruthers A. The evolution of botulinum neurotoxin type a for cosmetic applications. J Cosmet Laser Ther. 2007;9(3):186–92. https://doi.org/10.1080/14764170701411470.

Article  PubMed  Google Scholar 

De Boulle K, Fagien S, Sommer B, Glogau R. Treating glabellar lines with botulinum toxin type A-hemagglutinin complex: a review of the science, the clinical data, and patient satisfaction. Clin Interv Aging. 2010;5:101. https://doi.org/10.2147/cia.s9338.

Article  PubMed  PubMed Central  Google Scholar 

Wheeler A, Smith HS. Botulinum toxins: mechanisms of action, antinociception and clinical applications. Toxicology. 2013;306:124–46. https://doi.org/10.1016/j.tox.2013.02.006.

Article  CAS  PubMed  Google Scholar 

Stone HF, Zhu Z, Thach TQ, Ruegg CL. Characterization of diffusion and duration of action of a new botulinum toxin type a formulation. Toxicon. 2011;58(2):159–67.

Article  CAS  PubMed  Google Scholar 

Giordano CN, Matarasso SL, Ozog DM. Injectable and topical neurotoxins in dermatology: basic science, anatomy, and therapeutic agents. J Am Acad Dermatol. 2017;76(6):1013–24. https://doi.org/10.1016/j.jaad.2016.11.012.

Article  CAS  PubMed  Google Scholar 

Deshayes S, Morris M, Divita G, Heitz F. Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cell Mol Life Sci. 2005;62(16):1839–49. https://doi.org/10.1007/s00018-005-5109-0.

Article  CAS  PubMed  Google Scholar 

Järver P, Langel Ü. Cell-penetrating peptides—a brief introduction. Bba-Biomembranes. 2006;3(1758):260–3. https://doi.org/10.1016/j.bbamem.2006.02.012.

Article  CAS  Google Scholar 

Bechara C, Pallerla M, Zaltsman Y, Burlina F, Alves ID, Lequin O, Sagan S. Tryptophan within basic peptide sequences triggers glycosaminoglycan-dependent endocytosis. FASEB J. 2013;27(2):738–49. https://doi.org/10.1096/fj.12-216176.

Article  CAS  PubMed  Google Scholar 

Langel Ü. Cell-penetrating peptides. Springer; 2011.

Book  Google Scholar 

Zorko M, Langel Ü. Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev. 2005;57(4):529–45. https://doi.org/10.1016/j.addr.2004.10.010.

Article  CAS  PubMed  Google Scholar 

Patel LN, Zaro JL, Shen W-C. Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharm Res. 2007;24(11):1977–92. https://doi.org/10.1007/s11095-007-9303-7.

Article  CAS  PubMed  Google Scholar 

Bechara C, Sagan S. Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett. 2013;587(12):1693–702. https://doi.org/10.1016/j.febslet.2013.04.031.

Article  CAS  PubMed  Google Scholar 

Morris MC, Depollier J, Mery J, Heitz F, Divita G. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol. 2001;19(12):1173–6. https://doi.org/10.1038/nbt1201-1173.

Article  CAS  PubMed  Google Scholar 

Manoochehri S, Darvishi B, Kamalinia G, Amini M, Fallah M, Ostad SN, Atyabi F, Dinarvand R. Surface modification of PLGA nanoparticles via human serum albumin conjugation for controlled delivery of docetaxel. DARU J Pharm Sci. 2013;21(1):1–10. https://doi.org/10.1186/2008-2231-21-58.

Article  CAS  Google Scholar 

Lee JY, Choi YS, Suh JS, Kwon YM, Yang VC, Lee SJ, Chung CP, Park YJ. Cell-penetrating chitosan/doxorubicin/TAT conjugates for efficient cancer therapy. Int J Cancer. 2011;128(10):2470–80. https://doi.org/10.1002/ijc.25578.

Article  CAS  PubMed  Google Scholar 

Broide RS, Rubino J, Nicholson GS, Ardila MC, Brown MS, Aoki KR, Francis J. The rat digit abduction score (DAS) assay: a physiological model for assessing botulinum neurotoxin-induced skeletal muscle paralysis. Toxicon. 2013;71:18–24. https://doi.org/10.1016/j.toxicon.2013.05.004.

Article  CAS  PubMed  Google Scholar 

Bonventre P, Kempe L. Physiology of toxin production by clostridium botulinum types a and B: III. Effect of pH and temperature during incubation on growth, autolysis, and toxin production. Appl Microbiol. 1959;7(6):374–7. https://doi.org/10.1128/jb.79.1.18-23.1960.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pirazzini M, Rossetto O, Eleopra R, Montecucco C. Botulinum neurotoxins: biology, pharmacology, and toxicology. Pharmacol Rev. 2017;69(2):200–35. https://doi.org/10.1124/pr.116.012658.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi N-Q, Qi X-R, Xiang B, Zhang Y. A survey on “Trojan horse” peptides: opportunities, issues and controlled entry to “Troy”. J Control Release. 2014;194:53–70. https://doi.org/10.1016/j.jconrel.2014.08.014.

Article  CAS  PubMed  Google Scholar 

Drugs@FDA: FDA-Approved Drugs. [cited 2022 10-8]; Available from: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=BasicSearch.process.

Drug Approval Package: DAXXIFY. [cited 2022 10-08]; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2022/761127Orig1s000TOC.cfm.

Brock R. The uptake of arginine-rich cell-penetrating peptides: putting the puzzle together. Bioconjug Chem. 2014;25(5):863–8. https://doi.org/10.1021/bc500017t.

Article  CAS  PubMed  Google Scholar 

Vives E, Brodin P, Lebleu B. A truncated HIV-1 tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem. 1997;272(25):16010–7. https://doi.org/10.1074/jbc.272.25.16010.

Article  CAS  PubMed  Google Scholar 

Ben David A, Diamant E, Barnea A, Rosen O, Torgeman A, Zichel R. The receptor binding domain of botulinum neurotoxin serotype a (BoNT/a) inhibits BoNT/a and BoNT/E intoxications in vivo. Clin Vaccine Immunol. 2013;20(8):1266–73. https://doi.org/10.1128/CVI.00268-13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saffarian P, Peerayeh SN, Amani J, Ebrahimi F, Sedighian H, Halabian R, Fooladi AAI. TAT-BoNT/a (1–448), a novel fusion protein as a therapeutic agent: analysis of transcutaneous delivery and enzyme activity. Appl Microbiol Biotechnol. 2016;100(6):2785–95. https://doi.org/10.1007/s00253-015-7240-7.

Article  CAS  PubMed  Google Scholar 

Kim D-W, Kim S-Y, An J-J, Lee S-H, Jang S-H, Won M-H, Kang T-C, Chung K-H, Jung H-H, Cho S-W. Expression, purification and transduction of PEP-1-botulinum neurotoxin type a (PEP-1-BoNT/a) into skin. BMB Rep. 2006;39(5):642–7. https://doi.org/10.5483/bmbrep.2006.39.5.642.

Article  CAS  Google Scholar 

Ahmad Nasrollahi S, Taghibiglou C, Fouladdel S, Dinarvand R, Moosavi Movahedi AA, Azizi E, Farboud ES. Physicochemical and biological characterization of P ep-1/elastin complexes. Chem Biol Drug Des. 2013;82(2):189–95. https://doi.org/10.1111/cbdd.12150.

Article  CAS  PubMed  Google Scholar 

Mitchell DJ, Steinman L, Kim D, Fathman C, Rothbard J. Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res. 2000;56(5):318–25. https://doi.org/10.1034/j.1399-3011.2000.00723.

Article  CAS  PubMed  Google Scholar 

Ryser HJ-P, Hancock R. Histones and basic polyamino acids stimulate the uptake of albumin by tumor cells in culture. Science. 1965;150(3695):501–3. https://doi.org/10.1126/science.150.3695.501.

Article  CAS  PubMed  Google Scholar 

Lee J, Kennedy P, Waugh JM. Experiences with CPP-based self assembling peptide systems for topical delivery of botulinum toxin. In: Cell-penetrating peptides. Springer; 2015. p. 397–415.

Chapter  Google Scholar 

Gros E, Deshayes S, Morris MC, Aldrian-Herrada G, Depollier J, Heitz F, Divita G. A non-covalent peptide-based strategy for protein and peptide nucleic acid transduction. Bba-Biomembranes. 2006;1758(3):384–93. https://doi.org/10.1016/j.bbamem.2006.02.006.

Article  CAS  PubMed  Google Scholar 

Waugh JM, Lee J, Dake MD, Browne D. Nonclinical and clinical experiences with CPP-based self-assembling peptide systems in topical drug development. Cell-penetrating. Peptides. 2011:553–72. https://doi.org/10.1007/978-1-60761-919-2_39.

Shabani Ravari N, Goodarzi N, Alvandifar F, Amini M, Souri E, Khoshayand MR, Hadavand Mirzaie Z, Atyabi F, Dinarvand R. Fabrication and biological evaluation of chitosan coated hyaluronic acid-docetaxel conjugate nanoparticles in CD44+ cancer cells. DARU Pharm Sci. 2016;24(1):1–12. https://doi.org/10.1186/s40199-016-0160.

Article  Google Scholar 

留言 (0)

沒有登入
gif