Image-guided cancer surgery: a narrative review on imaging modalities and emerging nanotechnology strategies

Global Burden of Disease 2019 Cancer Collaboration. Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: a systematic analysis for the global burden of disease study 2019. JAMA Oncol. 2022;8:420–44.

Article  Google Scholar 

Sankar PL, Parker LS. The Precision Medicine Initiative’s All of Us Research Program: an agenda for research on its ethical, legal, and social issues. Genet Med. 2017;19:743–50.

Article  PubMed  Google Scholar 

Tringale KR, Pang J, Nguyen QT. Image-guided surgery in cancer: a strategy to reduce incidence of positive surgical margins. Wiley Interdiscip Rev Syst Biol Med. 2018;10: e1412.

Article  PubMed  Google Scholar 

Orosco RK, Tapia VJ, Califano JA, Clary B, Cohen EEW, Kane C, et al. Positive surgical margins in the 10 most common solid cancers. Sci Rep. 2018;8:5686.

Article  PubMed  PubMed Central  Google Scholar 

Miyamoto H. Intraoperative pathology consultation during urological surgery: impact on final margin status and pitfalls of frozen section diagnosis. Pathol Int. 2021;71:567–80.

Article  PubMed  Google Scholar 

Yoo T-K, Kang Y-J, Jeong J, Song J-Y, Kang SH, Lee HY, et al. A randomized controlled trial for doing vs omitting intraoperative frozen section biopsy for resection margin status in selected patients undergoing breast-conserving surgery (OFF-MAP Trial). J Breast Cancer. 2021;24:569–77.

Article  PubMed  PubMed Central  Google Scholar 

Voskuil FJ, Vonk J, van der Vegt B, Kruijff S, Ntziachristos V, van der Zaag PJ, et al. Intraoperative imaging in pathology-assisted surgery. Nat Biomed Eng. 2021;6:503.

Article  PubMed  Google Scholar 

Hussain T, Nguyen QT. Molecular imaging for cancer diagnosis and surgery. Adv Drug Deliv Rev. 2014;66:90–100.

Article  CAS  PubMed  Google Scholar 

Rowe SP, Pomper MG. Molecular imaging in oncology: current impact and future directions. CA Cancer J Clin. 2021;72:333.

Article  PubMed  PubMed Central  Google Scholar 

Chi C, Du Y, Ye J, Kou D, Qiu J, Wang J, et al. Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology. Theranostics. 2014;4:1072–84.

Article  PubMed  PubMed Central  Google Scholar 

Pogue BW, Rosenthal EL, Achilefu S, van Dam GM. Perspective review of what is needed for molecular-specific fluorescence-guided surgery. J Biomed Opt. 2018;23:1–9.

PubMed  Google Scholar 

Schouw HM, Huisman LA, Janssen YF, Slart RHJA, Borra RJH, Willemsen ATM, et al. Targeted optical fluorescence imaging: a meta-narrative review and future perspectives. Eur J Nucl Med Mol Imaging. 2021;48:4272–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Voskuil FJ, de Jongh SJ, Hooghiemstra WTR, Linssen MD, Steinkamp PJ, de Visscher SAHJ, et al. Fluorescence-guided imaging for resection margin evaluation in head and neck cancer patients using cetuximab-800CW: a quantitative dose-escalation study. Theranostics. 2020;10:3994–4005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harlaar NJ, Koller M, de Jongh SJ, van Leeuwen BL, Hemmer PH, Kruijff S, et al. Molecular fluorescence-guided surgery of peritoneal carcinomatosis of colorectal origin: a single-centre feasibility study. Lancet Gastroenterol Hepatol. 2016;1:283–90.

Article  PubMed  Google Scholar 

Biffi S, Voltan R, Bortot B, Zauli G, Secchiero P. Actively targeted nanocarriers for drug delivery to cancer cells. Expert Opin Drug Deliv. 2019;16:481–96.

Article  CAS  PubMed  Google Scholar 

Biffi S, Voltan R, Rampazzo E, Prodi L, Zauli G, Secchiero P. Applications of nanoparticles in cancer medicine and beyond: optical and multimodal in vivo imaging, tissue targeting and drug delivery. Expert Opin Drug Deliv. 2015;12:1837–49.

Article  CAS  PubMed  Google Scholar 

Di Lorenzo G, Ricci G, Severini GM, Romano F, Biffi S. Imaging and therapy of ovarian cancer: clinical application of nanoparticles and future perspectives. Theranostics. 2018;8:4279–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Gooyer JM, Elekonawo FMK, Bremers AJA, Boerman OC, Aarntzen EHJG, de Reuver PR, et al. Multimodal CEA-targeted fluorescence and radioguided cytoreductive surgery for peritoneal metastases of colorectal origin. Nat Commun. 2022;13:2621.

Article  PubMed  PubMed Central  Google Scholar 

Heidkamp J, Scholte M, Rosman C, Manohar S, Fütterer JJ, Rovers MM. Novel imaging techniques for intraoperative margin assessment in surgical oncology: a systematic review. Int J Cancer. 2021;149:635–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keereweer S, Van Driel PBAA, Snoeks TJA, Kerrebijn JDF, Baatenburgde Jong RJ, Vahrmeijer AL, et al. Optical image-guided cancer surgery: challenges and limitations. Clin Cancer Res. 2013;19:3745–54.

Article  PubMed  Google Scholar 

Dhawan AP, D’Alessandro B, Fu X. Optical imaging modalities for biomedical applications. IEEE Rev Biomed Eng. 2010;3:69–92.

Article  PubMed  Google Scholar 

Zavaleta CL, Garai E, Liu JTC, Sensarn S, Mandella MJ, Van de Sompel D, et al. A Raman-based endoscopic strategy for multiplexed molecular imaging. Proc Natl Acad Sci U S A. 2013;110:E2288-2297.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benson JR, van Leeuwen FWB, Sugie T. Editorial: state-of-the-art fluorescence image-guided surgery: current and future developments. Front Oncol. 2021;11: 776832.

Article  PubMed  PubMed Central  Google Scholar 

Chance B. Near-infrared images using continuous, phase-modulated, and pulsed light with quantitation of blood and blood oxygenation. Ann N Y Acad Sci. 1998;838:29–45.

Article  CAS  PubMed  Google Scholar 

Ekman M, Girnyi S, Marano L, Roviello F, Chand M, Diana M, et al. Near-infrared fluorescence image-guided surgery in esophageal and gastric cancer operations. Surg Innov. 2022;15533506211073416.

Sajedi S, Sabet H, Choi HS. Intraoperative biophotonic imaging systems for image-guided interventions. Nanophotonics. 2019;8:99–116.

Article  PubMed  Google Scholar 

Nakamura Y, Takada M, Imamura M, Higami A, Jiaxi H, Fujino M, et al. Usefulness and prospects of sentinel lymph node biopsy for patients with breast cancer using the medical imaging projection system. Front Oncol. 2021;11: 674419.

Article  PubMed  PubMed Central  Google Scholar 

Boussedra S, Benoit L, Koual M, Bentivegna E, Nguyen-Xuan H-T, Bats A-S, et al. Fluorescence guided surgery to improve peritoneal cytoreduction in epithelial ovarian cancer: a systematic review of available data. Eur J Surg Oncol J Eur Soc Surg Oncol Br Assoc Surg Oncol. 2022;48:1217–23.

Google Scholar 

Eatz TA, Eichberg DG, Lu VM, Di L, Komotar RJ, Ivan ME. Intraoperative 5-ALA fluorescence-guided resection of high-grade glioma leads to greater extent of resection with better outcomes: a systematic review. J Neurooncol. 2022;156:233–56.

Article  CAS  PubMed  Google Scholar 

Ahrens LC, Krabbenhøft MG, Hansen RW, Mikic N, Pedersen CB, Poulsen FR, et al. Effect of 5-aminolevulinic acid and sodium fluorescein on the extent of resection in high-grade gliomas and brain metastasis. Cancers. 2022;14:617.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rajakumar T, Yassin M, Musbahi O, Harris E, Lopez JF, Bryant RJ, et al. Use of intraoperative fluorescence to enhance robot-assisted radical prostatectomy. Future Oncol Lond Engl. 2021;17:1083–95.

Article  CAS  Google Scholar 

van Keulen S, Nishio N, Fakurnejad S, Birkeland A, Martin BA, Lu G, et al. The clinical application of fluorescence-guided surgery in head and neck cancer. J Nucl Med. 2019;60:758–63.

Article  PubMed  PubMed Central  Google Scholar 

Buda A, Di Martino G, Vecchione F, Bussi B, Dell’Anna T, Palazzi S, et al. Optimizing strategies for sentinel lymph node mapping in early-stage cervical and endometrial cancer: comparison of real-time fluorescence with indocyanine green and methylene blue. Int J Gynecol Cancer. 2015;25:1513–8.

Article  PubMed  Google Scholar 

Kan X, Zhang F, Zhou G, Ji H, Monsky W, Ingraham C, et al. Interventional real-time optical imaging guidance for complete tumor ablation. Proc Natl Acad Sci U S A. 2021;118: e2113028118.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Azargoshasb S, Boekestijn I, Roestenberg M, KleinJan GH, van der Hage JA, van der Poel HG, et al. Quantifying the impact of signal-to-background ratios on surgical discrimination of fluorescent lesions. Mol Imaging Biol. 2022;25:180.

Article  PubMed  PubMed Central  Google Scholar 

Bandi VG, Luciano MP, Saccomano M, Patel NL, Bischof TS, Lingg JGP, et al. Targeted multicolor in vivo imaging over 1,000 nm enabled by nonamethine cyanines. Nat Methods. 2022;19:353–8.

Article  CAS  PubMed  Google Scholar 

Biffi S, Andolfi L, Caltagirone C, Garrovo C, Falchi AM, Lippolis V, et al. Cubosomes for in vivo fluorescence lifetime imaging. Nanotechnology. 2017;28: 055102.

Article  PubMed  Google Scholar 

Biffi S, Garrovo C, Macor P, Tripodo C, Zorzet S, Secco E, et al. In vivo biodistribution and lifetime analysis of cy5.5-conjugated rituximab in mice bearing lymphoid tumor xenograft using time-domain near-infrared optical imaging. Mol Imaging. 2008;7:272–82.

留言 (0)

沒有登入
gif