Mitochondrial transplantation as a possible therapeutic option for sarcopenia

Luo J, Mills K, le Cessie S, Noordam R, van Heemst D (2020) Ageing, age-related diseases and oxidative stress: what to do next? Ageing Res Rev 57:100982. https://doi.org/10.1016/j.arr.2019.100982

Tosato M, Zamboni V, Ferrini A, Cesari M (2007) The aging process and potential interventions to extend life expectancy. Clin Interv Aging 2:401–412

PubMed  PubMed Central  Google Scholar 

Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cesari M, Landi F, Vellas B, Bernabei R, Marzetti E (2014) Sarcopenia and physical frailty: two sides of the same coin. Front Aging Neurosci 6:192. https://doi.org/10.3389/fnagi.2014.00192

Article  PubMed  PubMed Central  Google Scholar 

Rebelo-Marques A, De Sousa LA, Andrade R, Ribeiro CF, Mota-Pinto A, Carrilho F, Espregueira-Mendes J (2018) Aging hallmarks: the benefits of physical exercise. Front Endocrinol (Lausanne) 9:258. https://doi.org/10.3389/fendo.2018.00258

Article  PubMed  Google Scholar 

Schmauck-Medina T, Moliere A, Lautrup S, Zhang J, Chlopicki S, Madsen HB, Cao S, Soendenbroe C, Mansell E, Vestergaard MB et al (2022) New hallmarks of ageing: a 2022 Copenhagen ageing meeting summary. Aging (Albany NY) 14:6829–6839. https://doi.org/10.18632/aging.204248

Article  PubMed  Google Scholar 

McCay CM, Crowell MF, Maynard LA (1935) The effect of retarded growth upon the length of life span and upon the ultimate body size: one figure. J Nutr 10:63–79

Article  CAS  Google Scholar 

Crimmins EM (2015) Lifespan and healthspan: past, present, and promise. Gerontologist 55:901–911. https://doi.org/10.1093/geront/gnv130

Article  PubMed  PubMed Central  Google Scholar 

Kaeberlein M, Rabinovitch PS, Martin GM (2015) Healthy aging: the ultimate preventative medicine. Science 350:1191–1193. https://doi.org/10.1126/science.aad3267

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seo DY, Lee SR, Kim N, Ko KS, Rhee BD, Han J (2016) Age-related changes in skeletal muscle mitochondria: the role of exercise. Integr Med Res 5:182–186. https://doi.org/10.1016/j.imr.2016.07.003

Article  PubMed  PubMed Central  Google Scholar 

Lee SY, Tung HH, Liu CY, Chen LK (2018) Physical activity and sarcopenia in the geriatric population: a systematic review. J Am Med Dir Assoc 19:378–383. https://doi.org/10.1016/j.jamda.2018.02.003

Article  PubMed  Google Scholar 

Zhang Y, Hao Q, Ge M, Dong B (2018) Association of sarcopenia and fractures in community-dwelling older adults: a systematic review and meta-analysis of cohort studies. Osteoporos Int 29:1253–1262. https://doi.org/10.1007/s00198-018-4429-5

Article  CAS  PubMed  Google Scholar 

Naruse M, Fountain WA, Claiborne A, Finch WH, Trappe S, Trappe TA (2023) Muscle group-specific skeletal muscle aging: a 5-yr longitudinal study in septuagenarians. J Appl Physiol (1985) 134:915–922. https://doi.org/10.1152/japplphysiol.00769.2022

Article  Google Scholar 

Wiedmer P, Jung T, Castro JP, Pomatto LCD, Sun PY, Davies KJA, Grune T (2021) Sarcopenia - molecular mechanisms and open questions. Ageing Res Rev 65:101200. https://doi.org/10.1016/j.arr.2020.101200

Bowen TS, Schuler G, Adams V (2015) Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J Cachexia Sarcopenia Muscle 6:197–207. https://doi.org/10.1002/jcsm.12043

Article  PubMed  PubMed Central  Google Scholar 

Marzetti E, Calvani R, Cesari M, Buford TW, Lorenzi M, Behnke BJ, Leeuwenburgh C (2013) Mitochondrial dysfunction and sarcopenia of aging: from signaling pathways to clinical trials. Int J Biochem Cell Biol 45:2288–2301. https://doi.org/10.1016/j.biocel.2013.06.024

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coen PM, Musci RV, Hinkley JM, Miller BF (2018) Mitochondria as a target for mitigating sarcopenia. Front Physiol 9:1883. https://doi.org/10.3389/fphys.2018.01883

Article  PubMed  Google Scholar 

Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakaimal S, Nair KS (2005) Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci USA 102:5618–5623. https://doi.org/10.1073/pnas.0501559102

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW, Shulman GI (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300:1140–1142. https://doi.org/10.1126/science.1082889

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tyynismaa H, Mjosund KP, Wanrooij S, Lappalainen I, Ylikallio E, Jalanko A, Spelbrink JN, Paetau A, Suomalainen A (2005) Mutant mitochondrial helicase Twinkle causes multiple mtDNA deletions and a late-onset mitochondrial disease in mice. Proc Natl Acad Sci USA 102:17687–17692. https://doi.org/10.1073/pnas.0505551102

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bellanti F, Lo Buglio A, Vendemiale G (2021) Mitochondrial impairment in sarcopenia. Biology (Basel) 10. https://doi.org/10.3390/biology10010031

Gouspillou G, Sgarioto N, Kapchinsky S, Purves-Smith F, Norris B, Pion CH, Barbat-Artigas S, Lemieux F, Taivassalo T, Morais JA et al (2014) Increased sensitivity to mitochondrial permeability transition and myonuclear translocation of endonuclease G in atrophied muscle of physically active older humans. FASEB J 28:1621–1633. https://doi.org/10.1096/fj.13-242750

Article  CAS  PubMed  Google Scholar 

Roubenoff R, Hughes VA (2000) Sarcopenia: current concepts. J Gerontol A Biol Sci Med Sci 55:M716-724. https://doi.org/10.1093/gerona/55.12.m716

Article  CAS  PubMed  Google Scholar 

Doherty TJ (2003) Invited review: Aging and sarcopenia. J Appl Physiol (1985) 95:1717–1727. https://doi.org/10.1152/japplphysiol.00347.2003

Article  Google Scholar 

Hood DA, Memme JM, Oliveira AN, Triolo M (2019) Maintenance of skeletal muscle mitochondria in health, exercise, and aging. Annu Rev Physiol 81:19–41. https://doi.org/10.1146/annurev-physiol-020518-114310

Article  CAS  PubMed  Google Scholar 

Ganapathy A, Nieves JW (2020) Nutrition and sarcopenia-what do we know? Nutrients 12. https://doi.org/10.3390/nu12061755

Wu PY, Huang KS, Chen KM, Chou CP, Tu YK (2021) Exercise, nutrition, and combined exercise and nutrition in older adults with sarcopenia: a systematic review and network meta-analysis. Maturitas 145:38–48. https://doi.org/10.1016/j.maturitas.2020.12.009

Article  PubMed  Google Scholar 

Smith C, Woessner MN, Sim M, Levinger I (2022) Sarcopenia definition: does it really matter? Implications for resistance training. Ageing Res Rev 78:101617. https://doi.org/10.1016/j.arr.2022.101617

Wang H, Huang WY, Zhao Y (2022) Efficacy of exercise on muscle function and physical performance in older adults with sarcopenia: an updated systematic review and meta-analysis. Int J Environ Res Public Health 19. https://doi.org/10.3390/ijerph19138212

Beaudart C, Dawson A, Shaw SC, Harvey NC, Kanis JA, Binkley N, Reginster JY, Chapurlat R, Chan DC, Bruyere O et al (2017) Nutrition and physical activity in the prevention and treatment of sarcopenia: systematic review. Osteoporos Int 28:1817–1833. https://doi.org/10.1007/s00198-017-3980-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cannataro R, Carbone L, Petro JL, Cione E, Vargas S, Angulo H, Forero DA, Odriozola-Martinez A, Kreider RB, Bonilla DA (2021) Sarcopenia:etiology, nutritional approaches, and miRNAs. Int J Mol Sci 22. https://doi.org/10.3390/ijms22189724

Trouwborst I, Verreijen A, Memelink R, Massanet P, Boirie Y, Weijs P, Tieland M (2018) Exercise and nutrition strategies to counteract sarcopenic obesity. Nutrients 10. https://doi.org/10.3390/nu10050605

Hawley JA, Hargreaves M, Joyner MJ, Zierath JR (2014) Integrative biology of exercise. Cell 159:738–749. https://doi.org/10.1016/j.cell.2014.10.029

Article  CAS  PubMed  Google Scholar 

McGee SL, Hargreaves M (2020) Exercise adaptations: molecular mechanisms and potential targets for therapeutic benefit. Nat Rev Endocrinol 16:495–505. https://doi.org/10.1038/s41574-020-0377-1

Article  CAS  PubMed  Google Scholar 

Moreira JBN, Wohlwend M, Wisloff U (2020) Exercise and cardiac health: physiological and molecular insights. Nat Metab 2:829–839. https://doi.org/10.1038/s42255-020-0262-1

Article  PubMed  Google Scholar 

Ziaaldini MM, Marzetti E, Picca A, Murlasits Z (2017) Biochemical pathways of sarcopenia and their modulation by physical exercise: a narrative review. Front Med (Lausanne) 4:167. https://doi.org/10.3389/fmed.2017.00167

Article  PubMed  Google Scholar 

Ulger O, Kubat GB (2022) Therapeutic applications of mitochondrial transplantation. Biochimie 195:1–15. https://doi.org/10.1016/j.biochi.2022.01.002

Article  CAS  PubMed  Google Scholar 

McCully JD, Levitsky S, Del Nido PJ, Cowan DB (2016) Mitochondrial transplantation for therapeutic use. Clin Transl Med 5:16. https://doi.org/10.1186/s40169-016-0095-4

Article  PubMed  PubMed Central  Google Scholar 

Gollihue JL, Rabchevsky AG (2017) Prospects for therapeutic mitochondrial transplantation. Mitochondrion 35:70–79. https://doi.org/10.1016/j.mito.2017.05.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Z, Yan C, Miao J, Pu K, Ma H, Wang Q (2021) Muscle-derived mitochondrial transplantation reduces inflammation, enhances bacterial clearance, and improves survival in sepsis. Shock 56:108–118. https://doi.org/10.1097/SHK.0000000000001681

Article  CAS  PubMed  Google Scholar 

Lee JM, Hwang JW, Kim MJ, Jung SY, Kim KS, Ahn EH, Min K, Choi YS (2021) Mitochondrial transplantation modulates inflammation and apoptosis, alleviating tendinopathy both in vivo and in vitro. Antioxidants (Basel) 10. https://doi.org/10.3390/antiox10050696

Orfany A, Arriola CG, Doulamis IP, Guariento A, Ramirez-Barbieri G, Moskowitzova K, Shin B, Blitzer D, Rogers C, Del Nido PJ et al (2020) Mitochondrial transplantation ameliorates acute limb ischemia. J Vasc Surg 71:1014–1026. https://doi.org/10.1016/j.jvs.2019.03.079

Article  PubMed  Google Scholar 

Masuzawa A, Black KM, Pacak CA, Ericsson M, Barnett RJ, Drumm C, Seth P, Bloch DB, Levitsky S, Cowan DB et al (2013) Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 304:H966-982.

留言 (0)

沒有登入
gif