Premature ovarian insufficiency is associated with global alterations in the regulatory landscape and gene expression in balanced X-autosome translocations

Bonev B, Cavalli G. Organization and function of the 3D genome. Nat Rev Genet. 2016;17(11):661–78.

Article  CAS  PubMed  Google Scholar 

Akdemir KC, et al. Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer. Nat Genet. 2020;52(3):294–305.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Despang A, et al. Functional dissection of the Sox9–Kcnj2 locus identifies nonessential and instructive roles of TAD architecture. Nat Genet. 2019;51(8):1263–71.

Article  CAS  PubMed  Google Scholar 

Finn EH, Misteli T. Molecular basis and biological function of variability in spatial genome organization. Science. 2019;365(6457):eaaw9498.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghavi-Helm Y, et al. Highly rearranged chromosomes reveal uncoupling between genome topology and gene expression. Nat Genet. 2019;51(8):1272–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Redin C, et al. The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies. Nat Genet. 2017;49(1):36–45.

Article  CAS  PubMed  Google Scholar 

Zepeda-Mendoza CJ, et al. Computational prediction of position effects of apparently balanced human chromosomal rearrangements. Am J Hum Genet. 2017;101(2):206–17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kleinjan DA, et al. Aniridia-associated translocations, DNase hypersensitivity, sequence comparison and transgenic analysis redefine the functional domain of PAX6. Hum Mol Genet. 2001;10(19):2049–59.

Article  CAS  PubMed  Google Scholar 

Weiler KS, Wakimoto BT. Heterochromatin and gene expression in Drosophila. Annu Rev Genet. 1995;29:577–605.

Article  CAS  PubMed  Google Scholar 

Harewood L, et al. The effect of translocation-induced nuclear reorganization on gene expression. Genome Res. 2010;20(5):554–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ricard G, et al. Phenotypic consequences of copy number variation: insights from smith-magenis and potocki-lupski syndrome mouse models. PLoS Biol. 2010;8(11):e1000543.

Article  PubMed  PubMed Central  Google Scholar 

Dell’edera D, et al. Clinical correlation between premature ovarian failure and a chromosomal anomaly in a 22-year-old caucasian woman: a case report. J Med Case Rep. 2012;6(1):368.

Article  PubMed  PubMed Central  Google Scholar 

Genesio R, et al. Variegated silencing through epigenetic modifications of a large Xq region in a case of balanced X;2 translocation with incontinentia pigmenti-like phenotype. Epigenetics. 2011;6(10):1242–7.

Article  CAS  PubMed  Google Scholar 

Fortuno C, Labarta E. Genetics of primary ovarian insufficiency: a review. J Assist Reprod Genet. 2014;31(12):1573–85.

Article  PubMed  PubMed Central  Google Scholar 

Therman E, Laxova R, Susman B. The critical region on the human Xq. Hum Genet. 1990;85(5):455–61.

Article  CAS  PubMed  Google Scholar 

Powell CM, et al. Molecular and cytogenetic studies of an X;autosome translocation in a patient with premature ovarian failure and review of the literature. Am J Med Genet. 1994;52(1):19–26.

Article  CAS  PubMed  Google Scholar 

Tharapel AT, et al. Deletion (X) (q26.1-->q28) in a proband and her mother: molecular characterization and phenotypic-karyotypic deductions. Am J Hum Genet. 1993;52(3):463–71.

CAS  PubMed  PubMed Central  Google Scholar 

Rizzolio F, et al. Chromosomal rearrangements in Xq and premature ovarian failure: mapping of 25 new cases and review of the literature. Hum Reprod. 2006;21(6):1477–83.

Article  CAS  PubMed  Google Scholar 

Schlessinger D, et al. Genes and translocations involved in POF. Am J Med Genet. 2002;111(3):328–33.

Article  PubMed  Google Scholar 

Moysés-Oliveira M, et al. Genetic mechanisms leading to primary amenorrhea in balanced X-autosome translocations. Fertil Steril. 2015;103(5):1289-96.e2.

Article  PubMed  Google Scholar 

Portnoi MF, et al. Molecular cytogenetic studies of Xq critical regions in premature ovarian failure patients. Hum Reprod. 2006;21(9):2329–34.

Article  CAS  PubMed  Google Scholar 

Di-Battista A, Moysés-Oliveira M, Melaragno MI. Genetics of premature ovarian insufficiency and the association with X-autosome translocations. Reproduction. 2020;160(4):R55–64.

Article  CAS  PubMed  Google Scholar 

Rizzolio F, et al. Epigenetic analysis of the critical region I for premature ovarian failure: demonstration of a highly heterochromatic domain on the long arm of the mammalian X chromosome. J Med Genet. 2009;46(9):585–92.

Article  CAS  PubMed  Google Scholar 

Rosenbloom KR, et al. ENCODE data in the UCSC genome browser: year 5 update. Nucleic Acids Res. 2013;41(D1):D56–63.

Article  CAS  PubMed  Google Scholar 

Cantagrel V, et al. Disruption of a new X linked gene highly expressed in brain in a family with two mentally retarded males. J Med Genet. 2004;41(10):736–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Magome T, et al. XLMR protein related to neurite extension (Xpn/KIAA2022) regulates cell-cell and cell-matrix adhesion and migration. Neurochem Int. 2013;63(6):561–9.

Article  CAS  PubMed  Google Scholar 

Van Maldergem L, et al. Loss of function of KIAA2022 causes mild to severe intellectual disability with an autism spectrum disorder and impairs neurite outgrowth. Hum Mol Genet. 2013;22(16):3306–14.

Article  PubMed  PubMed Central  Google Scholar 

Körber L, et al. No evidence for preferential X-chromosome inactivation as the main cause of divergent phenotypes in sisters with X-linked hypohidrotic ectodermal dysplasia. Orphanet J Rare Dis. 2021;16(1):98.

Article  PubMed  PubMed Central  Google Scholar 

Mansouri MR, et al. Loss of ZDHHC15 expression in a woman with a balanced translocation t(X;15)(q13.3;cen) and severe mental retardation. Eur J Hum Genet. 2005;13(8):970–7.

Article  CAS  PubMed  Google Scholar 

Moyses-Oliveira M, et al. Breakpoint mapping at nucleotide resolution in X-autosome balanced translocations associated with clinical phenotypes. Eur J Hum Genet. 2019;27(5):760–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thutkawkorapin J, Lindblom A, Tham E. Exome sequencing in 51 early onset non-familial CRC cases. Mol Genet Genomic Med. 2019;7(5):e605.

Article  PubMed  PubMed Central  Google Scholar 

Bione S, et al. Mutation analysis of two candidate genes for premature ovarian failure, DACH2 and POF1B. Hum Reprod. 2004;19(12):2759–66.

Article  CAS  PubMed  Google Scholar 

Bione S, et al. A human homologue of the Drosophila melanogaster diaphanous gene is disrupted in a patient with premature ovarian failure: evidence for conserved function in oogenesis and implications for human sterility. Am J Hum Genet. 1998;62(3):533–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pisarska MD, et al. Expression of forkhead transcription factors in human granulosa cells. Fertil Steril. 2009;91(4 Suppl):1392–4.

Article  CAS  PubMed  Google Scholar 

Sun YL, et al. Involvement of FGF9/16/20 subfamily in female germ cell development of the Nile tilapia. Oreochromis Niloticus Fish Physiol Biochem. 2012;38(5):1427–39.

Article  CAS  PubMed  Google Scholar 

Stolk L, et al. Meta-analyses identify 13 loci associated with age at menopause and highlight DNA repair and immune pathways. Nat Genet. 2012;44(3):260–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chapman C, Cree L, Shelling AN. The genetics of premature ovarian failure: current perspectives. Int J Womens Health. 2015;7:799–810.

留言 (0)

沒有登入
gif