CCN–Hippo YAP signaling in vision and its role in neuronal, glial and vascular cell function and behavior

Arrigo A, Aragona E, Lattanzio R, Scalia G, Bandello F, Parodi MB (2021) Collateral vessel development in central and branch retinal vein occlusions are associated with worse visual and anatomic outcomes. Invest Ophthalmol vis Sci 62:1. https://doi.org/10.1167/iovs.62.14.1

Article  PubMed  PubMed Central  Google Scholar 

Barry DS, Pakan JM, McDermott KW (2014) Radial glial cells: key organisers in CNS development. Int J Biochem Cell Biol 46:76–79. https://doi.org/10.1016/j.biocel.2013.11.013

Article  CAS  PubMed  Google Scholar 

Besser M, Jagatheaswaran M, Reinhard J, Schaffelke P, Faissner A (2012) Tenascin C regulates proliferation and differentiation processes during embryonic retinogenesis and modulates the de-differentiation capacity of Muller glia by influencing growth factor responsiveness and the extracellular matrix compartment. Dev Biol 369:163–176. https://doi.org/10.1016/j.ydbio.2012.05.020

Article  CAS  PubMed  Google Scholar 

Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A (2006) Muller cells in the healthy and diseased retina. Prog Retin Eye Res 25:397–424. https://doi.org/10.1016/j.preteyeres.2006.05.003

Article  CAS  PubMed  Google Scholar 

Chaqour B (2013a) Molecular control of vascular development by the matricellular proteins CCN1 (Cyr61) and CCN2 (CTGF). Trends Dev Biol 7:59–72

CAS  PubMed  PubMed Central  Google Scholar 

Chaqour B (2013b) New insights into the function of the matricellular CCN1: an emerging target in proliferative retinopathies. J Ophthalmic vis Res 8:77–82

PubMed  PubMed Central  Google Scholar 

Chaqour B (2020) Caught between a “Rho” and a hard place: Are CCN1/CYR61 and CCN2/CTGF the arbiters of microvascular stiffness? J Cell Commun Signal 14:21–29. https://doi.org/10.1007/s12079-019-00529-3

Article  PubMed  Google Scholar 

Chintala H, Liu HB, Parmar R, Kamalska M, Kim YJ, Lovett D, Grant MB, Chaqour B (2012) Connective tissue growth factor regulates retinal neovascularization through p53 protein-dependent transactivation of the matrix metalloproteinase (MMP)-2 gene. J Biol Chem 287:40570–40585. https://doi.org/10.1074/jbc.M112.386565

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chintala H, Krupska I, Yan L, Lau L, Grant M, Chaqour B (2015) The matricellular protein CCN1 controls retinal angiogenesis by targeting VEGF, Src homology 2 domain phosphatase-1 and Notch signaling. Development 142:2364–2374. https://doi.org/10.1242/dev.121913

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi J, Lin A, Shrier E, Lau LF, Grant MB, Chaqour B (2013) Degradome products of the matricellular protein CCN1 as modulators of pathological angiogenesis in the retina. J Biol Chem 288:23075–23089. https://doi.org/10.1074/jbc.M113.475418

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi HJ, Zhang H, Park H, Choi KS, Lee HW, Agrawal V, Kim YM, Kwon YG (2015) Yes-associated protein regulates endothelial cell contact-mediated expression of angiopoietin-2. Nat Commun 6:6943. https://doi.org/10.1038/ncomms7943

Article  CAS  PubMed  Google Scholar 

Clark BS, Stein-O’Brien GL, Shiau F, Cannon GH, Davis-Marcisak E, Sherman T, Santiago CP, Hoang TV, Rajaii F, James-Esposito RE et al (2019) Single-cell RNA-seq analysis of retinal development identifies NFI factors as regulating mitotic exit and late-born cell specification. Neuron 102:1111–1126. https://doi.org/10.1016/j.neuron.2019.04.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

DeYoung C, Guan B, Ullah E, Blain D, Hufnagel RB, Brooks BP (2022) De novo frameshift mutation in YAP1 associated with bilateral uveal coloboma and microphthalmia. Ophthalmic Genet 43:513–517. https://doi.org/10.1080/13816810.2022.2028299

Article  CAS  PubMed  Google Scholar 

Eldred KC, Reh TA (2021) Human retinal model systems: strengths, weaknesses, and future directions. Dev Biol 480:114–122. https://doi.org/10.1016/j.ydbio.2021.09.001

Article  CAS  PubMed  Google Scholar 

Finkel Z, Esteban F, Rodriguez B, Fu T, Ai X, Cai L (2021) Diversity of adult neural stem and progenitor cells in physiology and disease. Cells. https://doi.org/10.3390/cells10082045

Article  PubMed  PubMed Central  Google Scholar 

Mohiuddin G, Lopez G, Sinon J, Hartnett ME, Bulakhova A, Chaqour B (2021) Regulation of neurogenesis and gliogenesis by the matricellular protein CCN2 in the mouse retina. bioAriv. https://doi.org/10.1101/2021.04.01.438112

Article  Google Scholar 

Gonzalez D, Brandan E (2019) CTGF/CCN2 from skeletal muscle to nervous system: impact on neurodegenerative diseases. Mol Neurobiol 56:5911–5916. https://doi.org/10.1007/s12035-019-1490-9

Article  CAS  PubMed  Google Scholar 

Grove M, Lee H, Zhao H, Son YJ (2020) Axon-dependent expression of YAP/TAZ mediates Schwann cell remyelination but not proliferation after nerve injury. Elife. https://doi.org/10.7554/eLife.50138

Article  PubMed  PubMed Central  Google Scholar 

Hamon A, Masson C, Bitard J, Gieser L, Roger JE, Perron M (2017) Retinal degeneration triggers the activation of YAP/TEAD in reactive Muller cells. Invest Ophthalmol vis Sci 58:1941–1953. https://doi.org/10.1167/iovs.16-21366

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hamon A, Garcia-Garcia D, Ail D, Bitard J, Chesneau A, Dalkara D, Locker M, Roger JE, Perron M (2019) Linking YAP to muller glia quiescence exit in the degenerative retina. Cell Rep 27:1712–1725. https://doi.org/10.1016/j.celrep.2019.04.045

Article  CAS  PubMed  Google Scholar 

Hasan A, Pokeza N, Shaw L, Lee HS, Lazzaro D, Chintala H, Rosenbaum D, Grant MB, Chaqour B (2011) The matricellular protein cysteine-rich protein 61 (CCN1/Cyr61) enhances physiological adaptation of retinal vessels and reduces pathological neovascularization associated with ischemic retinopathy. J Biol Chem 286:9542–9554. https://doi.org/10.1074/jbc.M110.198689

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holbourn KP, Acharya KR (2011) Cloning, expression and purification of the CCN family of proteins in Escherichia coli. Biochem Biophys Res Commun 407:837–841. https://doi.org/10.1016/j.bbrc.2011.03.122

Article  CAS  PubMed  Google Scholar 

Holt R, Ceroni F, Bax DA, Broadgate S, Diaz DG, Santos C, Gerrelli D, Ragge NK (2017) New variant and expression studies provide further insight into the genotype-phenotype correlation in YAP1-related developmental eye disorders. Sci Rep 7:7975. https://doi.org/10.1038/s41598-017-08397-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kastan NR, Oak S, Liang R, Baxt L, Myers RW, Ginn J, Liverton N, Huggins DJ, Pichardo J, Paul M et al (2022) Development of an improved inhibitor of Lats kinases to promote regeneration of mammalian organs. Proc Natl Acad Sci U S A 119:e2206113119. https://doi.org/10.1073/pnas.2206113119

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim KH, Min YK, Baik JH, Lau LF, Chaqour B, Chung KC (2003) Expression of angiogenic factor Cyr61 during neuronal cell death via the activation of c-Jun N-terminal kinase and serum response factor. J Biol Chem 278:13847–13854. https://doi.org/10.1074/jbc.M210128200

Article  CAS  PubMed  Google Scholar 

Kim M, Kim T, Johnson RL, Lim DS (2015) Transcriptional co-repressor function of the hippo pathway transducers YAP and TAZ. Cell Rep 11:270–282. https://doi.org/10.1016/j.celrep.2015.03.015

Article  CAS  PubMed  Google Scholar 

Kim J, Kim YH, Kim J, Park DY, Bae H, Lee DH, Kim KH, Hong SP, Jang SP, Kubota Y et al (2017) YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest 127:3441–3461. https://doi.org/10.1172/JCI93825

Article  PubMed  PubMed Central  Google Scholar 

Koester SE, Insel TR (2007) Mouse maps of gene expression in the brain. Genome Biol 8:212. https://doi.org/10.1186/gb-2007-8-5-212

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krupska I, Bruford EA, Chaqour B (2015) Eyeing the Cyr61/CTGF/NOV (CCN) group of genes in development and diseases: highlights of their structural likenesses and functional dissimilarities. Hum Genom 9:24. https://doi.org/10.1186/s40246-015-0046-y

Article  CAS  Google Scholar 

Leask A (2008) CCN2 YAPs at cancer. J Cell Commun Signal 2:47–48. https://doi.org/10.1007/s12079-008-0027-1

Article  PubMed  PubMed Central  Google Scholar 

Lee HY, Chung JW, Youn SW, Kim JY, Park KW, Koo BK, Oh BH, Park YB, Chaqour B, Walsh K, Kim HS (2007) Forkhead transcription factor FOXO3a is a negative regulator of angiogenic immediate early gene CYR61, leading to inhibition of vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res 100:372–380

Article  CAS  PubMed  Google Scholar 

Lee S, Elaskandrany M, Ahad A, Chaqour B (2017a) Analysis of CCN Protein expression and activities in vasoproliferative retinopathies. Methods Mol Biol 1489:543–556. https://doi.org/10.1007/978-1-4939-6430-7_46

Article  CAS  PubMed  Google Scholar 

Lee S, Elaskandrany M, Lau LF, Lazzaro D, Grant MB, Chaqour B (2017b) Interplay between CCN1 and Wnt5a in endothelial cells and pericytes determines the angiogenic outcome in a model of ischemic retinopathy. Sci Rep 7:1405. https://doi.org/10.1038/s41598-017-01585-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee S, Ahad A, Luu M, Moon S, Caesar J, Cardoso WV, Grant MB, Chaqour B (2019) CCN1-Yes-associated protein feedback loop regulates physiological and pathological angiogenesis. Mol Cell Biol. https://doi.org/10.1128/MCB.00107-19

留言 (0)

沒有登入
gif