Nanozyme-based dual-signal sensing system for colorimetric and photothermal detection of AChE activity in the blood of liver-injured mice

Patocka J, Kuca K, Jun D. Acetylcholinesterase and butyrylcholinesterase--important enzymes of human body. Acta Med (Hradec Kralove). 2004;47(4):215–28. https://doi.org/10.1515/9783110227802.19.

Article  CAS  Google Scholar 

Cui D, Jin J, Wang H, Liu Z, Yin T. The combination of acetylcholinesterase inhibitor therapy and high-frequency repetitive transcranial magnetic stimulation in Alzheimer’s disease: A preliminary fMRI study. Alzheimers Dement. 2021;17:e050257. https://doi.org/10.1002/alz.050257.

Article  Google Scholar 

Cao T, Zheng L, Zhang L, Teng Z, Liu Y. A highly butyrylcholinesterase selective red-emissive mitochondria-targeted fluorescent indicator imaging in liver tissue of mice. Sensors Actuators B Chem. 2021;330:129348.

Article  CAS  Google Scholar 

Giacobini E, Cuello AC, Fisher A. Reimagining cholinergic therapy for Alzheimer's disease. Brain. 2022;145(7):2250–75. https://doi.org/10.1016/j.snb.2020.129348.

Article  CAS  PubMed  Google Scholar 

Fedorova TD, Seidelin LB, Knudsen K, Schacht AC, Borghammer P. Decreased intestinal acetylcholinesterase in early parkinson disease. Neurology. 2017;88(8):775. https://doi.org/10.1212/WNL.0000000000003633.

Article  CAS  PubMed  Google Scholar 

Wang X, Li P, Ding Q, Wu C, Zhang W, Tang B. Observation of acetylcholinesterase in stress-induced depression phenotypes by two-photon fluorescence imaging in the mouse brain. J Am Chem Soc. 2019;141(5):2061–8. https://doi.org/10.1021/jacs.8b11414.

Article  CAS  PubMed  Google Scholar 

Cheng D, Xu W, Gong X, Yuan L, Zhang X. Design Strategy of Fluorescent Probes for Live Drug-Induced Acute Liver Injury Imaging. Acc Chem Res. 2021;54:403–15. https://doi.org/10.1021/acs.accounts.0c00646.

Article  CAS  PubMed  Google Scholar 

Cui HF, Zhang TT, Lv QY, Song X, Zhai XJ, Wang GG. An acetylcholinesterase biosensor based on doping Au nanorod @ SiO2 nanoparticles into TiO2-chitosan hydrogel for detection of organophosphate pesticides. Biosens Bioelectron. 2019;141:111452. https://doi.org/10.1016/j.bios.2019.111452.

Article  CAS  PubMed  Google Scholar 

Xue R, Kang TF, Lu LP, Cheng SY. Immobilization of acetylcholinesterase via biocompatible interface of silk fibroin for detection of organophosphate and carbamate pesticides. Appl Surf Sci. 2012;258(16):6040–5. https://doi.org/10.1016/j.apsusc.2012.02.123.

Article  CAS  Google Scholar 

Xu X, Cen Y, Xu G, Wei F, Shi M, Hu Q. A ratiometric fluorescence probe based on carbon dots for discriminative and highly sensitive detection of acetylcholinesterase and butyrylcholinesterase in human whole blood. Biosens Bioelectron. 2019;131:232–6. https://doi.org/10.1016/j.bios.2019.02.031.

Article  CAS  PubMed  Google Scholar 

Zhu Y, Wang M, Zhang X, Cao J, She Y, Cao Z, Abd El-Aty AM. Acetylcholinesterase immobilized on magnetic mesoporous silica nanoparticles coupled with fluorescence analysis for rapid detection of carbamate pesticides. ACS Applied Nano Materials. 2022;5(1):1327–38. https://doi.org/10.1021/acsanm.1c03884.

Article  CAS  Google Scholar 

Guo J, Wu S, Wang Y, Zhao M. A label-free fluorescence biosensor based on a bifunctional mil-101(Fe) nanozyme for sensitive detection of choline and acetylcholine at nanomolar level. Sensors Actuators B Chem. 2020;312:128021. https://doi.org/10.1016/j.snb.2020.128021.

Article  CAS  Google Scholar 

Qi JF, Tan D, Wang XJ, Ma HT, Lu B. A Novel Acetylcholinesterase Biosensor with dual-Recognized Strategy Based on Molecularly Imprinted Polymer. Sensors Actuators B Chem. 2021;337:129760. https://doi.org/10.1016/j.snb.2021.129760.

Article  CAS  Google Scholar 

Montali L, Calabretta MM, Lopreside A, D'Elia M, Guardigli M, Michelini E. Multienzyme chemiluminescent foldable biosensor for on-site detection of acetylcholinesterase inhibitors. Biosens Bioelectron. 2020;162:112232. https://doi.org/10.1016/j.bios.2020.112232.

Article  CAS  PubMed  Google Scholar 

Sgobbi LF, Machado SAS. Functionalized polyacrylamide as an acetylcholinesterase-inspired biomimetic device for electrochemical sensing of organophosphorus pesticides. Biosens Bioelectron. 2018;100:290–7. https://doi.org/10.1016/j.bios.2017.09.019.

Article  CAS  PubMed  Google Scholar 

Ivanov A, Davletshina R, Sharafieva I, Evtugyn G. Electrochemical biosensor based on polyelectrolyte complexes for the determination of reversible inhibitors of acetylcholinesterase. Talanta. 2019;194:723–30. https://doi.org/10.1016/j.talanta.2018.10.100.

Article  CAS  PubMed  Google Scholar 

Yang T, Luo Z, Tian Y, Qian C, Duan Y. Design strategies of aunps-based nucleic acid colorimetric biosensors. TrAC Trends Anal Chem. 2019;124:115795. https://doi.org/10.1016/j.trac.2019.115795.

Article  CAS  Google Scholar 

Sun J, Lu Y, He L, Pang J, Yang F, Liu Y. Colorimetric sensor array based on gold nanoparticles: design principles and recent advances. TrAC Trends Anal Chem (Reference Ed). 2020;122:115754. https://doi.org/10.1016/j.trac.2019.115754.

Article  CAS  Google Scholar 

Zhou W, Hu K, Kwee S, Tang L, Wang Z, Xia J, Li X. Gold Nanoparticle Aggregation-Induced Quantitative Photothermal Biosensing Using a Thermometer: A Simple and Universal Biosensing Platform. Anal Chem. 2020;92:2739–47. https://doi.org/10.1021/acs.analchem.9b04996.

Article  CAS  PubMed  Google Scholar 

Lu D, Jiang H, Zhang G, Luo Q, Zhao Q, Shi X. An In Situ Generated Prussian Blue Nanoparticle-Mediated Multimode Nanozyme-Linked Immunosorbent Assay for the Detection of Aflatoxin B1. ACS Appl Mater Interfaces. 2021;13(22):25738–47. https://doi.org/10.1021/acsami.1c04751.

Article  CAS  PubMed  Google Scholar 

Zhao D, Chen C, Sun J, Yang X. Carbon dots-assisted colorimetric and fluorometric dual-mode protocol for acetylcholinesterase activity and inhibitors screening based on the inner filter effect of silver nanoparticles. Analyst. 2016;141(11):3280–8. https://doi.org/10.1039/C6AN00514D.

Article  CAS  PubMed  Google Scholar 

Wang W, Zhang Y, Zhang W, Liu Y, Ma P, Wang X, Sun Y, Song D. A novel sensing platform for the determination of alkaline phosphatase based on SERS-fluorescent dual-mode signals. Anal Chim Acta. 2021;1183:338989. https://doi.org/10.1016/j.aca.2021.338989.

Article  CAS  PubMed  Google Scholar 

Guo J, Liu Y, Zhang L, Pan J, Wang Y, Wang Y, Cai H, Ju H, Lu G. An ascorbic acid-responsive chemo-chromic SERS sensing chip for synergistic dual-modal on-site analysis of alkaline phosphatase. Sensors Actuators B Chem. 2022;371:132527. https://doi.org/10.1016/j.snb.2022.132527.

Article  CAS  Google Scholar 

Fu G, Sanjay ST, Dou M, Li X. Nanoparticle-mediated photothermal effect enables a new method for quantitative biochemical analysis using a thermometer. Nanoscale. 2016;8:5422–7. https://doi.org/10.1039/C5NR09051B.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang J, Xing H, Lu Y. Translating molecular detections into a simple temperature test using a target-responsive smart thermometer. Chem Sci. 2018;9:3906–10. https://doi.org/10.1039/C7SC05325H.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou S, Zhao Y, Mecklenburg M, Yang D, Xie B. A novel thermometric biosensor for fast surveillance of β-lactamase activity in milk. Biosens Bioelectron. 2013;49:99–104. https://doi.org/10.1016/j.bios.2013.05.005.

Article  CAS  PubMed  Google Scholar 

Ahangari H, Kurbanoglu S, Ehsani A, Uslu B. Latest trends for biogenic amines detection in foods: Enzymatic biosensors and nanozymes applications. Trends Food Sci Technol. 2021;112:75–87. https://doi.org/10.1016/j.tifs.2021.03.037.

Article  CAS  Google Scholar 

Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev. 2013;42(14):6060–93. https://doi.org/10.1039/C8CS00457A.

Article  CAS  PubMed  Google Scholar 

Huang Y, Ren J, Qu X. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chem Rev. 2019;119(6):4357–412. https://doi.org/10.1021/acs.chemrev.8b00672.

Article  CAS  PubMed  Google Scholar 

Jiang B, Yan L, Zhang J, Zhou M, Shi G, Tian X, Fan K, Hao C, Yan X. Biomineralization Synthesis of the Cobalt Nanozyme in SP94-Ferritin Nanocages for Prognostic Diagnosis of Hepatocellular Carcinoma. ACS Appl Mater Interfaces. 2019;11(10):9747–55. https://doi.org/10.1021/acsami.8b20942.

Article  CAS  PubMed  Google Scholar 

Ding H, Yin X, Zhu ZH, Zhang L. A high accurate hamiltonian nodal position finite element method for spatial cable structures undergoing long-term large overall motion. Commun Nonlinear Sci Numer Simul. 2019;70:203–22. https://doi.org/10.1016/j.cnsns.2018.10.006.

Article  Google Scholar 

Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–83. https://doi.org/10.1038/nnano.2007.260.

Article  CAS  PubMed  Google Scholar 

Fu G, Sanjay ST, Zhou W, Brekken RA, Kirken RA, Li X. Exploration of Nanoparticle-Mediated Photothermal Effect of TMB-H2O2 Colorimetric System and Its Application in a Visual Quantitative Photothermal Immunoassay. Anal Chem. 2018;90:5930–7. https://doi.org/10.1021/acs.analchem.8b00842.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He L, Chen F, Zhang D, Xie S, Xu S, Wang Z, Zhang L, Cui C, Liu Y, Tan W. Transducing Complex Biomolecular Interactions by Temperature-Output Artificial DNA Signaling Networks. J Am Chem Soc. 2020;142:14234–9. https://doi.org/10.1021/jacs.0c05453.

Article  CAS  PubMed  Google Scholar 

Zhu H, Tamura T, Fujisawa A, Nishikawa Y, Cheng R, Takato M, Hamachi I. Imaging and profiling of proteins under oxidative conditions in cells and tissues by hydrogen-peroxide-responsive labeling. J Am Chem Soc. 2020;142(37):15711–21. https://doi.org/10.1021/jacs.0c02547.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif