The fluorescence regulation of a tri-functional oligonucleotide probe HEX-OND in detecting Pb(II), cysteine, and K(I) based on two G-quadruplex forms

Davis JT. G-quartets 40 years later: from 5′-GMP to molecular biology and supramolecular chemistry. Angew Chem-Int Ed. 2004;43(6):668–98.

Article  CAS  Google Scholar 

Ma D-L, Zhang Z, Wang M, Lu L, Zhong H-J, Leung C-H. Recent developments in G-quadruplex probes. Chem Biol. 2015;22(7):812–28.

Article  CAS  PubMed  Google Scholar 

Tian T, Xiao H, Zhou X. A review: G-quadruplex’s applications in biological target detection and drug delivery. Curr Top Med Chem. 2015;15(19):1988–2001.

Article  CAS  PubMed  Google Scholar 

Roxo C, Kotkowiak W, Pasternak A. G-quadruplex-forming aptamers-characteristics, applications, and perspectives. Molecules. 2019;24(20):3781.

Daei P, Ramezanpour M, Khanaki K, Tabarzad M, Nikokar I, Hedayati M, et al. Aptamer-based targeted delivery of miRNA let-7d to gastric cancer cells as a novel anti-tumor therapeutic agent. Iran J Pharm Res. 2018;17(4):1537–49.

CAS  PubMed  PubMed Central  Google Scholar 

Reyes-Reyes EM, Salipur FR, Shams M, Forsthoefel MK, Bates PJ. Mechanistic studies of anticancer aptamer AS1411 reveal a novel role for nudeolin in regulating Rac1 activation. Mol Oncol. 2015;9(7):1392–405.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perrone R, Butovskaya E, Lago S, Garzino-Demo A, Pannecouque C, Palu G, et al. The G-quadruplex-forming aptamer AS1411 potently inhibits HIV-1 attachment to the host cell. Int J Antimicrob Agents. 2016;47(4):311–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tasset DM, Kubik MF, Steiner W. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. J Mol Biol. 1997;272(5):688–98.

Article  CAS  PubMed  Google Scholar 

Yuan L, Tian T, Chen Y, Zhang Z, Zhou X. An L-DNA G-quadruplex: application for peroxidase dnazyme. Nucleosides Nucleotides Nucleic Acids. 2013;32(11):589–98.

Article  CAS  PubMed  Google Scholar 

Li C, Wu B, Chen S, Hao K, Yang J, Cao H, et al. Structural requirement of G-quadruplex/aptamer-combined DNA macromolecule serving as efficient drug carrier for cancer-targeted drug delivery. Eur J Pharm Biopharm. 2021;159:221–7.

Article  CAS  PubMed  Google Scholar 

Lopes-Nunes J, Oliveira P, Cruz C. G-quadruplex-based drug delivery systems for cancer therapy. Pharmaceuticals. 2021;14(7):671.

Han Y, Zhang F, Gong H, Cai C. Multifunctional G-quadruplex-based fluorescence probe coupled with DNA-templated AgNCs for simultaneous detection of multiple DNAs and MicroRNAs. Anal Chim Acta. 2019;1053:105–13.

Article  CAS  PubMed  Google Scholar 

Moccia F, Platella C, Musumeci D, Batool S, Zumrut H, Bradshaw J, et al. The role of G-quadruplex structures of LIGS-generated aptamers R1.2 and R1.3 in IgM specific recognition. Int J Biol Macromol. 2019;133:839–49.

Zhao H, Ma C, Chen M. A novel fluorometric method for inorganic pyrophosphatase detection based on G-quadruplex-thioflavin T. Mol Cell Probes. 2019;43:29–33.

Article  CAS  PubMed  Google Scholar 

Srinivasan S, Ranganathan V, DeRosa MC, Murari BM. Comparison of turn-on and ratiometric fluorescent G-quadruplex aptasensor approaches for the detection of ATP (vol 411, pg 1319, 2019). Anal Bioanal Chem. 2019;411(7):1491-.

Saidur MR, Aziz ARA, Basirun WJ. Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: a review. Biosens Bioelectron. 2017;90:125–39.

Article  CAS  PubMed  Google Scholar 

Li T, Wang E, Dong S. Potassium-lead-switched G-quadruplexes: a new class of DNA logic gates. J Am Chem Soc. 2009;131(42):15082.

Article  CAS  PubMed  Google Scholar 

Liu C-W, Huang C-C, Chang H-T. Highly selective DNA-based sensor for lead(II) and mercury(II) Ions. Anal Chem. 2009;81(6):2383–7.

Article  CAS  PubMed  Google Scholar 

Zhang YL, Chen WH, Dong XT, Fan H, Wang XH, Bian LJ. Simultaneous detection of trace toxic metal ions, Pb2+ and Ag+, in water and food using a novel single-labeled fluorescent oligonucleotide probe. Sens Actuators B-Chem. 2018;261:58–65.

Article  CAS  Google Scholar 

Zhang JX, Ma X, Chen WH, Bai YF, Xue PL, Chen KH, et al. Bifunctional single-labelled oligonucleotide probe for detection of trace Ag(I) and Pb(II) based on cytosine-Ag(I)-cytosine mismatches and G-quadruplex. Anal Chim Acta. 2021;1151:10.

Article  Google Scholar 

Badocco D, Mondin A, Fusar A, Favaro G, Pastore P. Influence of the real background signal on the linearity of the Stern-Volmer calibration for the determination of molecular oxygen with optical sensors. J Phys Chem C. 2009;113(35):15742–50.

Article  CAS  Google Scholar 

Gehlen MH. The centenary of the Stern-Volmer equation of fluorescence quenching: from the single line plot to the SV quenching map. J Photochem Photobiol C. 2020;42: 100338.

Article  CAS  Google Scholar 

Pan B, Xing B, Liu W, Xing G, Tao S. Investigating interactions of phenanthrene with dissolved organic matter: limitations of Stern-Volmer plot. Chemosphere. 2007;69(10):1555–62.

Article  CAS  PubMed  Google Scholar 

Wang J, Song Y, Jinyang S, Wu X, Sun Y, Pan X, et al. Miniature fluorescent sensor for chloride ion concentration determination based on modified Stern-Volmer Equation. Measurement. 2013;46(10):3982–7.

Article  Google Scholar 

Cheng Y-m, Fa H-b, Yin W, Hou C-j, Huo D-q, Liu F-m, et al. A sensitive electrochemical sensor for lead based on gold nanoparticles/nitrogen-doped graphene composites functionalized with L-cysteine-modified electrode. J Solid State Electrochem. 2016;20(2):327–35.

Farkas E, Buglyo P. 8. Lead(II) complexes of amino acids, peptides, and other related ligands of biological interest. In: Sigel A, Sigel H, Sigel RKO, editors. Lead: its effects on environment and health. Metal Ions in Life Sciences. 17. Berlin: Boston: De Gruyter; 2017. p. 201–40.

Pirie A, Lajtha LG. Possible mechanism of cysteine protection against radiation cataract. Nature. 1959;184:1125–7.

Article  CAS  PubMed  Google Scholar 

Hasanbasic S, Jahic A, Karahmet E, Sejranic A, Prnjavorac B. The role of cysteine protease in Alzheimer disease. Mater Socio-Med. 2016;28(3):235–8.

Article  Google Scholar 

Jiao N, Wang L, Wang Y, Xu D, Zhang X, Yin J. Cysteine exerts an essential role in maintaining intestinal integrity and function independent of glutathione. Mol Nutr Food Res. 2022;66(3):2100728.

Wang Y, Zhu M, Jiang E, Hua R, Na R, Li QX. A simple and rapid turn on ESIPT fluorescent probe for colorimetric and ratiometric detection of biothiols in living cells. Sci Rep. 2017;7:4377.

Chwatko G, Bald E. Determination of cysteine in human plasma by high-performance liquid chromatography and ultraviolet detection after pre-column derivatization with 2-chloro-1-methylpyridinium iodide. Talanta. 2000;52(3):509–15.

Article  CAS  PubMed  Google Scholar 

Braga P, Montes-Bayon M, Alvarez J, Lopez JM, Sanz-Medel A. Characterization, biological interactions and in-vivo detection of selenotrisulfide derivatives of glutathion, cysteine and homocysteine by HPLC-ICP-MS. J Anal At Spectrom. 2004;19(9):1128–33.

Article  CAS  Google Scholar 

Shen Y, Yue J, Shi W, Xu W, Xu S. Target-triggered hot spot dispersion for cellular biothiol detection via background-free surface-enhanced Raman scattering tags. Biosens Bioelectron. 2020;151:111957.

Yin H-F, Gao M-J, Jiang W-J, Gan Y-H, Li C, Kang Y-F, et al. A simple probe with visible color change for selective detection of cysteine. Spectrosc Lett. 2020;53(9):664–70.

Article  CAS  Google Scholar 

Chen T, Pei X, Yue Y, Huo F, Yin C. An enhanced fluorescence sensor for specific detection Cys over Hcy/GSH and its bioimaging in living cells. Spectrochim Acta Part A Mol Biomol Spectrosc. 2019;209:223–7.

Article  CAS  Google Scholar 

Fan F, Xu C, Liu X, Zhu M, Wang Y. A novel ESIPT-based fluorescent probe with dual recognition sites for the detection of hydrazine in the environmental water samples and in-vivo bioimaging. Spectrochim Acta Part A Mol Biomol Spectrosc. 2022;280:121499.

Liu X, Zhu M, Xu C, Fan F, Chen P, Wang Y, et al. An ICT-based coumarin fluorescent probe for the detection of hydrazine and its application in environmental water samples and organisms. Front Bioeng Biotechnol. 2022;10:937489.

Tippana R, Xiao W, Myong S. G-quadruplex conformation and dynamics are determined by loop length and sequence. Nucleic Acids Res. 2014;42(12):8106–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sabharwal NC, Savikhin V, Turek-Herman JR, Nicoludis JM, Szalai VA, Yatsunyk LA. N-methylmesoporphyrin IX fluorescence as a reporter of strand orientation in guanine quadruplexes. FEBS J. 2014;281(7):1726–37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yett A, Lin LY, Beseiso D, Miao J, Yatsunyk LA. N-methyl mesoporphyrin IX as a highly selective light-up probe for G-quadruplex DNA. J Porphyr Phthalocyanines. 2019;23(11n12):1195–215.

John MN, Steven PB, Jean LM, Liliya AY. Interaction of human telomeric DNA with N-methyl mesoporphyrin IX. Nucleic Acids Res. 2012;40(12):5432–47.

Article  Google Scholar 

Endoh T, Rode AB, Takahashi S, Kataoka Y, Kuwahara M, Sugimoto N. Real-time monitoring of G-quadruplex formation during transcription. Anal Chem. 2016;88(4):1984–9.

Article  CAS  PubMed  Google Scholar 

Paramasivan S, Rujan I, Bolton PH. Circular dichroism of quadruplex DNAs: applications to structure, cation effects and ligand binding. Methods (San Diego, Calif). 2007;43(4):324–31.

Article  CAS  PubMed  Google Scholar 

Qin Y, Hurley LH. Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions. Biochimie. 2008;90(8):1149–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kotch FW, Fettinger JC, Davis JT. A lead-filled G-quadruplex: insight into the G-quartet’s selectivity for Pb2+ over K+. Org Lett. 2000;2(21):3277–80.

Article  CAS  PubMed  Google Scholar 

Ross PD, Subramanian S. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry. 1981;20(11):3096–102.

Article  CAS  PubMed  Google Scholar 

Gomez-Machuca H, Quiroga-Campano C, Zapata-Torres G, Jullian C. Influence of DM beta CD on the interaction of copper(II) complex of 6-hydroxychromone-3-carbaldehyde-3-hydroxybenzoylhydrazine with ctDNA. ACS Omega. 2020;5(12):6928–36.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif