Middle-out sequence confirmation of CRISPR/Cas9 single guide RNA (sgRNA) using DNA primers and ribonuclease T1 digestion

Pickar-Oliver A, Gersbach CA. The next generation of CRISPR–Cas technologies and applications. Nat Rev Mol Cell Bio. 2019;20:490–507. https://doi.org/10.1038/s41580-019-0131-5.

Article  CAS  Google Scholar 

Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, Steinfeld I, Lunstad BD, Kaiser RJ, Wilkens AB, Bacchetta R, Tsalenko A, Dellinger D, Bruhn L, Porteus MH. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol. 2015;33:985–9. https://doi.org/10.1038/nbt.3290.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moon SB, Kim DY, Ko J-H, Kim J-S, Kim Y-S. Improving CRISPR genome editing by engineering guide RNAs. Trends Biotechnol. 2019;37:870–81. https://doi.org/10.1016/j.tibtech.2019.01.009.

Article  CAS  PubMed  Google Scholar 

Basila M, Kelley ML, van Smith A, B. Minimal 2’-O-methyl phosphorothioate linkage modification pattern of synthetic guide RNAs for increased stability and efficient CRISPR-Cas9 gene editing avoiding cellular toxicity. Plos One. 2017;12:e0188593. https://doi.org/10.1371/journal.pone.0188593.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther. 2020;5:1. https://doi.org/10.1038/s41392-019-0089-y.

Article  PubMed  PubMed Central  Google Scholar 

Ryan DE, Taussig D, Steinfeld I, Phadnis SM, Lunstad BD, Singh M, Vuong X, Okochi KD, McCaffrey R, Olesiak M, Roy S, Yung CW, Curry B, Sampson JR, Bruhn L, Dellinger DJ. Improving CRISPR–Cas specificity with chemical modifications in single-guide RNAs. Nucleic Acids Res. 2018;46:792–803. https://doi.org/10.1093/nar/gkx1199.

Article  CAS  PubMed  Google Scholar 

Filippova J, Matveeva A, Zhuravlev E, Stepanov G. Guide RNA modification as a way to improve CRISPR/Cas9-based genome-editing systems. Biochimie. 2019;167:49–60. https://doi.org/10.1016/j.biochi.2019.09.003.

Article  CAS  PubMed  Google Scholar 

Alfonzo JD, Brown JA, Byers PH, Cheung VG, Maraia RJ, Ross RL. A call for direct sequencing of full-length RNAs to identify all modifications. Nat Genet. 2021;53:1113–6. https://doi.org/10.1038/s41588-021-00903-1.

Article  CAS  PubMed  Google Scholar 

Nakayama H, Yamauchi Y, Nobe Y, Sato K, Takahashi N, Shalev-Benami M, Isobe T, Taoka M. Method for direct mass-spectrometry-based identification of monomethylated RNA nucleoside positional isomers and its application to the analysis of Leishmania rRNA. Anal Chem. 2019;91:15634–43. https://doi.org/10.1021/acs.analchem.9b03735.

Article  CAS  PubMed  Google Scholar 

Sutton JM, Guimaraes GJ, Annavarapu V, van Dongen WD, Bartlett MG. Current state of oligonucleotide characterization using liquid chromatography–mass spectrometry: insight into critical issues. J Am Soc Mass Spectr. 2020;31:1775–82. https://doi.org/10.1021/jasms.0c00179.

Article  CAS  Google Scholar 

Kimura S, Dedon PC, Waldor MK. Comparative tRNA sequencing and RNA mass spectrometry for surveying tRNA modifications. Nat Chem Biol. 2020;16:964–72. https://doi.org/10.1038/s41589-020-0558-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang J, Yan S, Chang L, Guo W, Wang Y, Wang Y, Zhang P, Chen H-Y, Huang S. Direct microRNA sequencing using nanopore-induced phase-shift sequencing. Iscience. 2020;23:100916. https://doi.org/10.1016/j.isci.2020.100916.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei B, Wang J, Cadang L, Goyon A, Chen B, Yang F, Zhang K (2022) Development of an ion pairing reversed-phase liquid chromatography-mass spectrometry method for characterization of clustered regularly interspaced short palindromic repeats guide ribonucleic acid. J Chromatogr A. 462839. https://doi.org/10.1016/j.chroma.2022.462839

Kanavarioti A. HPLC methods for purity evaluation of man-made single-stranded RNAs. Sci Rep-uk. 2019;9:1019. https://doi.org/10.1038/s41598-018-37642-z.

Article  CAS  Google Scholar 

Goyon A, Scott B, Kurita K, Crittenden CM, Shaw D, Lin A, Yehl P, Zhang K. Full sequencing of CRISPR/Cas9 single guide RNA (sgRNA) via parallel ribonuclease digestions and hydrophilic interaction liquid chromatography–high-resolution mass spectrometry analysis. Anal Chem. 2021;93:14792–801. https://doi.org/10.1021/acs.analchem.1c03533.

Article  CAS  PubMed  Google Scholar 

Goyon A, Scott B, Kurita K, Maschinot C, Meyer K, Yehl P, Zhang K. On-line sequencing of CRISPR guide RNAs and their impurities via the use of immobilized ribonuclease cartridges attached to a 2D/3D-LC–MS system. Anal Chem. 2021. https://doi.org/10.1021/acs.analchem.1c04350.

Article  PubMed  Google Scholar 

Tao J, Ningxi Y, Jaeah K, John-Ross M, Mildred K, Kanchana R, Edward JM, Vladimir P, Serenus H. Oligonucleotide sequence mapping of large therapeutic mRNAs via parallel ribonuclease digestions and LC-MS/MS. Anal Chem. 2019;91:8500–6. https://doi.org/10.1021/acs.analchem.9b01664.

Article  CAS  Google Scholar 

Paulines MJ, Wetzel C, Limbach PA. Using spectral matching to interpret LC-MS/MS data during RNA modification mapping. J Mass Spectrom. 2019;54:906–14. https://doi.org/10.1002/jms.4456.

Article  CAS  PubMed  Google Scholar 

Oberacher H, Pitterl F. On the use of ESI-QqTOF-MS/MS for the comparative sequencing of nucleic acids. Biopolym. 2009;91:401–9. https://doi.org/10.1002/bip.21156.

Article  CAS  Google Scholar 

Taucher M, Breuker K. Characterization of modified RNA by top-down mass spectrometry. Angewandte Chemie Int Ed Engl. 2012;51:11289–92. https://doi.org/10.1002/anie.201206232.

Article  CAS  Google Scholar 

Crittenden CM, Lanzillotti MB, Chen B. Top-down mass spectrometry of synthetic single guide ribonucleic acids enabled by facile sample clean-up. Anal Chem. 2023. https://doi.org/10.1021/acs.analchem.2c03030.

Article  PubMed  Google Scholar 

Hossain M, Limbach PA. Mass spectrometry-based detection of transfer RNAs by their signature endonuclease digestion products. RNA. 2007;13:295–303. https://doi.org/10.1261/rna.272507.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wolf EJ, Grünberg S, Dai N, Chen T-H, Roy B, Yigit E, Corrêa IR. Human RNase 4 improves mRNA sequence characterization by LC–MS/MS. Nucleic Acids Res. 2022;50:e106–e106. https://doi.org/10.1093/nar/gkac632.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vanhinsbergh CJ, Criscuolo A, Sutton JN, Murphy K, Williamson AJK, Cook K, Dickman MJ. Characterization and sequence mapping of large RNA and mRNA Therapeutics using mass spectrometry. Anal Chem. 2022;94:7339–49. https://doi.org/10.1021/acs.analchem.2c00765.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Edy VG, Szekely M, Loviny T, Dreyer C. Action of nucleases on double-stranded RNA. Eur J Biochem. 1976;61:563–72. https://doi.org/10.1111/j.1432-1033.1976.tb10051.x.

Article  CAS  PubMed  Google Scholar 

Loverix S, Winqvist A, Strömberg R, Steyaert J. Mechanism of RNase T1: concerted triester-like phosphoryl transfer via a catalytic three-centered hydrogen bond. Chem Biol. 2000;7:651–8. https://doi.org/10.1016/s1074-5521(00)00005-3.

Article  CAS  PubMed  Google Scholar 

Huang M, Xu X, Qiu H, Li N. Analytical characterization of DNA and RNA oligonucleotides by hydrophilic interaction liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2021;1648:462184. https://doi.org/10.1016/j.chroma.2021.462184.

Article  CAS  PubMed  Google Scholar 

Birdsall RE, Gilar M, Shion H, Yu YQ, Chen W. Reduction of metal adducts in oligonucleotide mass spectra in ion-pair reversed-phase chromatography/mass spectrometry analysis. Rapid Commun Mass Sp. 2016;30:1667–79. https://doi.org/10.1002/rcm.7596.

Article  CAS  Google Scholar 

Houser WM, Butterer A, Addepalli B, Limbach PA. Combining recombinant ribonuclease U2 and protein phosphatase for RNA modification mapping by liquid chromatography–mass spectrometry. Anal Biochem. 2015;478:52–8. https://doi.org/10.1016/j.ab.2015.03.016.

Article  CAS  PubMed  Google Scholar 

Shigematsu M, Kawamura T, Kirino Y. Generation of 2′,3′-cyclic phosphate-containing RNAs as a hidden layer of the transcriptome. Frontiers Gen. 2018;9:562. https://doi.org/10.3389/fgene.2018.00562.

Article  CAS  Google Scholar 

Honda S, Morichika K, Kirino Y. Selective amplification and sequencing of cyclic phosphate–containing RNAs by the cP-RNA-seq method. Nat Protoc. 2016;11:476–89. https://doi.org/10.1038/nprot.2016.025.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schutz K, Hesselberth JR, Fields S. Capture and sequence analysis of RNAs with terminal 2′,3′-cyclic phosphates. RNA. 2010;16:621–31. https://doi.org/10.1261/rna.1934910.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif