Introme accurately predicts the impact of coding and noncoding variants on gene splicing, with clinical applications

Mattick JS, Dinger M, Schonrock N, Cowley M. Whole genome sequencing provides better diagnostic yield and future value than whole exome sequencing. Med J Aust. 2018;209:197–9.

Article  PubMed  Google Scholar 

Baralle D, Lucassen A, Buratti E: Missed threads. The impact of pre-mRNA splicing defects on clinical practice. EMBO Rep. 2009; 10:810–816.

Jaganathan K, KyriazopoulouPanagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI, Kosmicki JA, Arbelaez J, Cui W, Schwartz GB, et al. Predicting splicing from primary sequence with deep learning. Cell. 2019;176(535–548): e524.

Google Scholar 

Lim KH, Ferraris L, Filloux ME, Raphael BJ, Fairbrother WG. Using positional distribution to identify splicing elements and predict pre-mRNA processing defects in human genes. Proc Natl Acad Sci U S A. 2011;108:11093–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bournazos AM, Riley LG, Bommireddipalli S, Ades L, Akesson LS, Al-Shinnag M, Alexander SI, Archibald AD, Balasubramaniam S, Berman Y, et al. Standardized practices for RNA diagnostics using clinically accessible specimens reclassifies 75% of putative splicing variants. Genet Med. 2022;24:130–45.

Article  CAS  PubMed  Google Scholar 

Ohno K, Takeda JI, Masuda A. Rules and tools to predict the splicing effects of exonic and intronic mutations. Wiley Interdiscip Rev RNA. 2018;9(1):10.1002/wrna.1451. https://doi.org/10.1002/wrna.1451.

Wang Y, Liu J, Huang BO, Xu YM, Li J, Huang LF, Lin J, Zhang J, Min QH, Yang WM, Wang XZ. Mechanism of alternative splicing and its regulation. Biomed Rep. 2015;3:152–8.

Article  CAS  PubMed  Google Scholar 

Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, Beroud C. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37: e67.

Article  PubMed  PubMed Central  Google Scholar 

Hug N, Longman D, Caceres JF. Mechanism and regulation of the nonsense-mediated decay pathway. Nucleic Acids Res. 2016;44:1483–95.

Article  PubMed  PubMed Central  Google Scholar 

Leman R, Gaildrat P, Gac GL, Ka C, Fichou Y, Audrezet MP, Caux-Moncoutier V, Caputo SM, Boutry-Kryza N, Leone M, et al. Novel diagnostic tool for prediction of variant spliceogenicity derived from a set of 395 combined in silico/in vitro studies: an international collaborative effort. Nucleic Acids Res. 2018;46:7913–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grodecka L, Hujova P, Kramarek M, Krsjakova T, Kovacova T, Vondraskova K, Ravcukova B, Hrncirova K, Soucek P, Freiberger T. Systematic analysis of splicing defects in selected primary immunodeficiencies-related genes. Clin Immunol. 2017;180:33–44.

Article  CAS  PubMed  Google Scholar 

Fraile-Bethencourt E, Valenzuela-Palomo A, Diez-Gomez B, Goina E, Acedo A, Buratti E, Velasco EA. Mis-splicing in breast cancer: identification of pathogenic BRCA2 variants by systematic minigene assays. J Pathol. 2019;248:409–20.

Article  CAS  PubMed  Google Scholar 

Lee M, Roos P, Sharma N, Atalar M, Evans TA, Pellicore MJ, Davis E, Lam AN, Stanley SE, Khalil SE, et al. Systematic computational identification of variants that activate exonic and intronic cryptic splice sites. Am J Hum Genet. 2017;100:751–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yeo G, Burge CB. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol. 2004;11:377–94.

Article  CAS  PubMed  Google Scholar 

Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR. ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res. 2003;31:3568–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jian X, Boerwinkle E, Liu X. In silico prediction of splice-altering single nucleotide variants in the human genome. Nucleic Acids Res. 2014;42:13534–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiong HY, Alipanahi B, Lee LJ, Bretschneider H, Merico D, Yuen RK, Hua Y, Gueroussov S, Najafabadi HS, Hughes TR, et al: RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease. Science 2015; 347:1254806.

Cheng J, Nguyen TYD, Cygan KJ, Celik MH, Fairbrother WG, Avsec Z, Gagneur J. MMSplice: modular modeling improves the predictions of genetic variant effects on splicing. Genome Biol. 2019;20:48.

Article  PubMed  PubMed Central  Google Scholar 

Monger S, Troup M, Ip E, Dunwoodie SL, Giannoulatou E. Spliceogen: an integrative, scalable tool for the discovery of splice-altering variants. Bioinformatics. 2019;35(21):4405-7.

Rentzsch P, Schubach M, Shendure J, Kircher M. CADD-Splice-improving genome-wide variant effect prediction using deep learning-derived splice scores. Genome Med. 2021;13:31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics. 2017;33:2938–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gooding C, Clark F, Wollerton MC, Grellscheid SN, Groom H, Smith CW. A class of human exons with predicted distant branch points revealed by analysis of AG dinucleotide exclusion zones. Genome Biol. 2006;7:R1.

Article  PubMed  PubMed Central  Google Scholar 

Turunen JJ, Niemela EH, Verma B, Frilander MJ. The significant other: splicing by the minor spliceosome. Wiley Interdiscip Rev RNA. 2013;4:61–76.

Article  CAS  PubMed  Google Scholar 

Bryen SJ, Joshi H, Evesson FJ, Girard C, Ghaoui R, Waddell LB, Testa AC, Cummings B, Arbuckle S, Graf N, et al. Pathogenic abnormal splicing due to intronic deletions that induce biophysical space constraint for spliceosome assembly. Am J Hum Genet. 2019;105:573–87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuhn M, Weston S, Culp M, Coulter N, Quinlan R: Package ‘C50’. 2018. https://cran.microsoft.com/snapshot/2022-02-10/web/packages/C50/C50.pdf.

Garrido-Martin D, Palumbo E, Guigo R, Breschi A. ggsashimi: Sashimi plot revised for browser- and annotation-independent splicing visualization. PLoS Comput Biol. 2018;14: e1006360.

Article  PubMed  PubMed Central  Google Scholar 

Findlay GM, Daza RM, Martin B, Zhang MD, Leith AP, Gasperini M, Janizek JD, Huang X, Starita LM, Shendure J. Accurate classification of BRCA1 variants with saturation genome editing. Nature. 2018;562:217–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wong M, Mayoh C, Lau LMS, Khuong-Quang DA, Pinese M, Kumar A, Barahona P, Wilkie EE, Sullivan P, Bowen-James R, et al. Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer. Nat Med. 2020;26:1742–53.

Article  CAS  PubMed  Google Scholar 

Zhou X, Edmonson MN, Wilkinson MR, Patel A, Wu G, Liu Y, Li Y, Zhang Z, Rusch MC, Parker M, et al. Exploring genomic alteration in pediatric cancer using ProteinPaint. Nat Genet. 2016;48:4–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dofash LNH, Monahan GV, Servián-Morilla E, et al. A KLHL40 3' UTR splice-altering variant causes milder NEM8, an under-appreciated disease mechanism. Hum Mol Genet. 2023;32(7):1127-36.

Rudaks LI, Watson E, Oboudiyat C, Kumar KR, Sullivan P, Cowley MJ, Davis RL, Sue CM. Decompensation of cardiorespiratory function and emergence of anemia during pregnancy in a case of mitochondrial myopathy, lactic acidosis, and sideroblastic anemia 2 with compound heterozygous YARS2 pathogenic variants. Am J Med Genet A. 2022;188:2226–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mallawaarachchi AC, Lundie B, Hort Y, Schonrock N, Senum SR, Gayevskiy V, Minoche AE, Hollway G, Ohnesorg T, Hinchcliffe M, et al. Genomic diagnostics in polycystic kidney disease: an assessment of real-world use of whole-genome sequencing. Eur J Hum Genet. 2021;29:760–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Surapaneni A, Schlosser P, Zhou L, Liu C, Chatterjee N, Arking DE, Dutta D, Coresh J, Rhee EP, Grams ME. Identification of 969 protein quantitative trait loci in an African American population with kidney disease attributed to hypertension. Kidney Int. 2022;102:1167–77.

Article  CAS  PubMed  Google Scholar 

Cheung R, Insigne KD, Yao D, Burghard CP, Wang J, Hsiao YE, Jones EM, Goodman DB, Xiao X, Kosuri S. A multiplexed assay for exon recognition reveals that an unappreciated fraction of rare genetic variants cause large-effect splicing disruptions. Mol Cell. 2019;73(183–194): e188.

Google Scholar 

Dawes R, Joshi H, Cooper ST. Empirical prediction of variant-activated cryptic splice donors using population-based RNA-Seq data. Nat Commun. 2022;13:1655.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davis RL, Homer VM, George PM, Brennan SO. A deep intronic mutation in FGB creates a consensus exonic splicing enhancer motif that results in afibrinogenemia caused by aberrant mRNA splicing, which can be corrected in vitro with antisense oligonucleotide treatment. Hum Mutat. 2009;30:221–7.

Article  CAS  PubMed  Google Scholar 

Bauwens M, Garanto A, Sangermano R, Naessens S, Weisschuh N, De Zaeytijd J, Khan M, Sadler F, Balikova I, Van Cauwenbergh C, et al. ABCA4-associated disease as a model for missing heritability in autosomal recessive disorders: novel noncoding splice, cis-regulatory, structural, and recurrent hypomorphic variants. Genet Med. 2019;21:1761–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;28:1–26.

Article  Google Scholar 

Therneau T, Atkinson B, Ripley B, Ripley MB. Package ‘rpart’. 2015. Available online: https://CRAN.R-project.org/package=rpart. Accessed 20 Apr 2016.

留言 (0)

沒有登入
gif