Update on Small Molecule Targeted Therapies for Acute Myeloid Leukemia

Yates JW, Wallace HJ Jr, Ellison RR, Holland JF. Cytosine arabinoside (NSC-63878) and daunorubicin (NSC-83142) therapy in acute nonlymphocytic leukemia. Cancer Chemother Rep. 1973;57(4):485–8.

CAS  PubMed  Google Scholar 

Godwin CD, Gale RP, Walter RB. Gemtuzumab ozogamicin in acute myeloid leukemia. Leukemia. 2017;31(9):1855–68. https://doi.org/10.1038/leu.2017.187.

Article  CAS  PubMed  Google Scholar 

Tallman MS, Nabhan C, Feusner JH, Rowe JM. Acute promyelocytic leukemia: evolving therapeutic strategies. Blood. 2002;99(3):759–67. https://doi.org/10.1182/blood.v99.3.759.

Article  CAS  PubMed  Google Scholar 

Lo-Coco F, et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med. 2013;369(2):111–21. https://doi.org/10.1056/NEJMoa1300874.

Article  CAS  PubMed  Google Scholar 

Alexander TB, et al. Decreased relapsed rate and treatment-related mortality contribute to improved outcomes for pediatric acute myeloid leukemia in successive clinical trials. Cancer. 2017;123(19):3791–8. https://doi.org/10.1002/cncr.30791.

Article  PubMed  Google Scholar 

Stone RM, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377(5):454–64. https://doi.org/10.1056/NEJMoa1614359. Reference 6 is landmark publications that led to the approval of midostaurin, the first approved FLT3 inhibitor.

Uddin R, Darwish NHE, Mousa SA. Acute myeloid leukemia mutations and future mechanistic target to overcome resistance. Curr Treat Options Oncol. 2021;22(9):76. https://doi.org/10.1007/s11864-021-00880-x.

Article  PubMed  Google Scholar 

Koedam J, Wermke M, Ehninger A, Cartellieri M, Ehninger G. Chimeric antigen receptor T-cell therapy in acute myeloid leukemia. Curr Opin Hematol. 2022;29(2):74–83. https://doi.org/10.1097/MOH.0000000000000703.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Melo Garcia L, Barabe F. Harnessing macrophages through the blockage of CD47: implications for acute myeloid leukemia. Cancers (Basel). 2021;13(24). https://doi.org/10.3390/cancers13246258.

Mardis ER, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361(11):1058–66. https://doi.org/10.1056/NEJMoa0903840.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paschka P, et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol. 2010;28(22):3636–43. https://doi.org/10.1200/JCO.2010.28.3762.

Article  CAS  PubMed  Google Scholar 

Marcucci G, et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol. 2010;28(14):2348–55. https://doi.org/10.1200/JCO.2009.27.3730.

Article  CAS  PubMed  PubMed Central  Google Scholar 

DiNardo CD, et al. Characteristics, clinical outcome, and prognostic significance of IDH mutations in AML. Am J Hematol. 2015;90(8):732–6. https://doi.org/10.1002/ajh.24072.

Article  CAS  PubMed  PubMed Central  Google Scholar 

N. Cancer Genome Atlas Research, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059–74. https://doi.org/10.1056/NEJMoa1301689.

Article  CAS  Google Scholar 

Chou WC, et al. The prognostic impact and stability of Isocitrate dehydrogenase 2 mutation in adult patients with acute myeloid leukemia. Leukemia. 2011;25(2):246–53. https://doi.org/10.1038/leu.2010.267.

Article  CAS  PubMed  Google Scholar 

Figueroa ME, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18(6):553–67. https://doi.org/10.1016/j.ccr.2010.11.015.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu C, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012;483(7390):474–8. https://doi.org/10.1038/nature10860.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chan SM, et al. Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia. Nat Med. 2015;21(2):178–84. https://doi.org/10.1038/nm.3788.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanz MA, et al. Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood. 2009;113(9):1875–91. https://doi.org/10.1182/blood-2008-04-150250.

Article  CAS  PubMed  Google Scholar 

DiNardo CD, et al. Lack of association of IDH1, IDH2 and DNMT3A mutations with outcome in older patients with acute myeloid leukemia treated with hypomethylating agents. Leuk Lymphoma. 2014;55(8):1925–9. https://doi.org/10.3109/10428194.2013.855309.

Article  PubMed  PubMed Central  Google Scholar 

Traina F, et al. Impact of molecular mutations on treatment response to DNMT inhibitors in myelodysplasia and related neoplasms. Leukemia. 2014;28(1):78–87. https://doi.org/10.1038/leu.2013.269.

Article  CAS  PubMed  Google Scholar 

Konopleva M, et al. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov. 2016;6(10):1106–17. https://doi.org/10.1158/2159-8290.CD-16-0313.

Article  CAS  PubMed  PubMed Central  Google Scholar 

DiNardo CD, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133(1):7–17. https://doi.org/10.1182/blood-2018-08-868752. Reference 23 is landmark publications that established hypomethylating agents with venetoclax as a new standard of care for patients unfit for intensive induction.

Article  CAS  PubMed  PubMed Central  Google Scholar 

DiNardo CD, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020;383(7):617–29. https://doi.org/10.1056/NEJMoa2012971. Reference 24 is landmark publications that established hypomethylating agents with venetoclax as a new standard of care for patients unfit for intensive induction.

Article  CAS  PubMed  Google Scholar 

Pollyea DA, et al. Impact of venetoclax and azacitidine in treatment-naive patients with acute myeloid leukemia and IDH1/2 mutations. Clin Cancer Res. 2022;28(13):2753–61. https://doi.org/10.1158/1078-0432.CCR-21-3467.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Venugopal S, et al. Decitabine and venetoclax for IDH1/2-mutated acute myeloid leukemia. Am J Hematol. 2021;96(5):E154–7. https://doi.org/10.1002/ajh.26122.

Article  CAS  PubMed  PubMed Central  Google Scholar 

DiNardo CD, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018;378(25):2386–98. https://doi.org/10.1056/NEJMoa1716984.

Article  CAS  PubMed  Google Scholar 

Roboz GJ, et al. Ivosidenib induces deep durable remissions in patients with newly diagnosed IDH1-mutant acute myeloid leukemia. Blood. 2020;135(7):463–71. https://doi.org/10.1182/blood.2019002140. Reference 28 is critical early studies that demonstrated clinical efficay higher that historic expectations for IDH1 and IDH2 inhibitors.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stein EM, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130(6):722–31. https://doi.org/10.1182/blood-2017-04-779405. Reference 29 is critical early studies that demonstrated clinical efficay higher that historic expectations for IDH1 and IDH2 inhibitors.

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Botton S, et al. Enasidenib vs conventional care in older patients with late-stage mutant-IDH2 relapsed/refractory AML: a randomized phase 3 trial. Blood. 2023;141(2):156–67. https://doi.org/10.1182/blood.2021014901.

Article  CAS  PubMed  Google Scholar 

Watts JM, et al. Olutasidenib alone or with azacitidine in IDH1-mutated acute myeloid leukaemia and myelodysplastic syndrome: phase 1 results of a phase 1/2 trial. Lancet Haematol. 2023;10(1):e46–58. https://doi.org/10.1016/S2352-3026(22)00292-7.

Article  CAS  PubMed  Google Scholar 

Cortes JE, et al. Olutasidenib (FT-2102) induces durable complete remissions in patients with relapsed/refractory mIDH1 acute myeloid leukemia. Results from a planned interim analysis of a phase 2 pivotal clinical trial. Blood. 2022;140(Supplement 1):6193–6. https://doi.org/10.1182/blood-2022-167330.

Article  Google Scholar 

Harding JJ, et al. Isoform switching as a mechanism of acquired resistance to mutant isocitrate dehydrogenase inhibition. Cancer Discov. 2018;8(12):1540–7. https://doi.org/10.1158/2159-8290.CD-18-0877.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choe S, et al. Molecular mechanisms mediating relapse following ivosidenib monotherapy in IDH1-mutant relapsed or refractory AML. Blood Adv. 2020;4(9):1894–905. https://doi.org/10.1182/bloodadvances.2020001503.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mellinghoff IK, et al. Vorasidenib, a dual inhibitor of mutant IDH1/2, in recurrent or progressive glioma; results of a first-in-human phase I trial. Clin Cancer Res. 2021;27(16):4491–9. https://doi.org/10.1158/1078-0432.CCR-21-0611.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doraiswamy A, et al. A phase 1, open-label, multicenter study of HMPL-306 in advanced hematological malignancies with isocitrate dehydrogenase (IDH) mutations. Blood. 2021;138(Supplement 1):4438–4438.

留言 (0)

沒有登入
gif