Encapsulating and stabilizing enzymes using hydrogen-bonded organic frameworks

Thornberry, N. A. & Lazebink, Y. Caspases: enemies within. Science 281, 1312–1316 (1998).

Article  CAS  PubMed  Google Scholar 

Henzler-Wildman, K. & Kern, D. Dynamic personalities of proteins. Nature 450, 964–972 (2007).

Article  CAS  PubMed  Google Scholar 

Sheldon, R. A. & Woodley, J. M. Role of biocatalysis in sustainable chemistry. Chem. Rev. 118, 801–838 (2018).

Article  CAS  PubMed  Google Scholar 

Intasian, P. et al. Enzymes, in vivo biocatalysis, and metabolic engineering for enabling a circular economy and sustainability. Chem. Rev. 121, 10367–10451 (2021).

Article  CAS  PubMed  Google Scholar 

Devine, P. N. et al. Extending the application of biocatalysis to meet the challenges of drug development. Nat. Rev. Chem. 2, 409–421 (2018).

Article  Google Scholar 

Schmid, A. et al. Industrial biocatalysis today and tomorrow. Nature 409, 258–268 (2001).

Article  CAS  PubMed  Google Scholar 

Wong, L. S., Khan, F. & Micklefield, J. Selective covalent protein immobilization: strategies and applications. Chem. Rev. 109, 4025–4053 (2009).

Article  CAS  PubMed  Google Scholar 

Sheldon, R. A., Basso, A. & Brady, D. New frontiers in enzyme immobilisation: robust biocatalysts for a circular bio-based economy. Chem. Soc. Rev. 50, 5850–5862 (2021).

Article  CAS  PubMed  Google Scholar 

Huang, S., Chen, G. & Ouyang, G. Confining enzymes in porous organic frameworks: from synthetic strategy and characterization to healthcare applications. Chem. Soc. Rev. 51, 6824–6863 (2022).

Article  CAS  PubMed  Google Scholar 

Liang, W. et al. Metal–organic framework-based enzyme biocomposites. Chem. Rev. 121, 1077–1129 (2021).

Article  CAS  PubMed  Google Scholar 

Lian, X. et al. Enzyme–MOF (metal–organic framework) composites. Chem. Soc. Rev. 46, 3386–3401 (2017).

Article  CAS  PubMed  Google Scholar 

Wang, B., Lin, R.-B., Zhang, Z., Xiang, S. & Chen, B. Hydrogen-bonded organic frameworks as a tunable platform for functional materials. J. Am. Chem. Soc. 142, 14399–14416 (2020).

Article  CAS  PubMed  Google Scholar 

Li, P., Ryder, M. R. & Stoddart, J. F. Hydrogen-bonded organic frameworks: a rising class of porous molecular materials. Acc. Mater. Res. 1, 77–87 (2020).

Article  CAS  Google Scholar 

Song, X. et al. Design rules of hydrogen-bonded organic frameworks with high chemical and thermal stabilities. J. Am. Chem. Soc. 144, 10663–10687 (2022).

Article  CAS  PubMed  Google Scholar 

Lin, R.-B. & Chen, B. Hydrogen-bonded organic frameworks: chemistry and functions. Chem 8, 2114–2135 (2022).

Article  CAS  Google Scholar 

Liang, W. et al. Enzyme encapsulation in a porous hydrogen-bonded organic framework. J. Am. Chem. Soc. 141, 14298–14305 (2019).

Article  CAS  PubMed  Google Scholar 

Wied, P. et al. Combining a genetically engineered oxidase with hydrogen-bonded organic frameworks (HOFs) for highly efficient biocomposites. Angew. Chem. Int. Ed. 61, e202117345 (2022).

Article  CAS  Google Scholar 

Chen, G. et al. Protein-directed, hydrogen-bonded biohybrid framework. Chem 7, 2722–2742 (2021).

Article  CAS  Google Scholar 

Tang, Z. et al. A biocatalytic cascade in an ultrastable mesoporous hydrogen-bonded organic framework for point-of-care biosensing. Angew. Chem. Int. Ed. 60, 23608–23613 (2021).

Article  CAS  Google Scholar 

Tang, J. et al. In-situ encapsulation of protein into nanoscale hydrogen-bonded organic frameworks for intracellular biocatalysis. Angew. Chem. Int. Ed. 60, 22315–22321 (2021).

Article  CAS  Google Scholar 

Chen, G. et al. Hydrogen-bonded organic framework biomimetic entrapment allowing non-native biocatalytic activity in enzyme. Nat. Commun. 13, 4816 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nelson, J. & Griffin, E. G. Adsorption of invertase. J. Am. Chem. Soc. 38, 1109–1115 (1916).

Article  CAS  Google Scholar 

Hartmann, M. & Kostrov, X. Immobilization of enzymes on porous silicas—benefits and challenges. Chem. Soc. Rev. 42, 6277–6289 (2013).

Article  CAS  PubMed  Google Scholar 

Pierre, A. C. The sol-gel encapsulation of enzymes. Biocatal. Biotransformation 22, 145–170 (2004).

Article  CAS  Google Scholar 

Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013).

Article  PubMed  Google Scholar 

Cote, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

Article  CAS  PubMed  Google Scholar 

Lykourinou, V. et al. Immobilization of MP-11 into a mesoporous metal–organic framework, MP-11@mesoMOF: a new platform for enzymatic catalysis. J. Am. Chem. Soc. 133, 10382–10385 (2011).

Article  CAS  PubMed  Google Scholar 

Li, P. et al. Nanosizing a metal–organic framework enzyme carrier for accelerating nerve agent hydrolysis. ACS Nano 10, 9174–9182 (2016).

Article  CAS  PubMed  Google Scholar 

Li, P. et al. Hierarchically engineered mesoporous metal-organic frameworks toward cell-free immobilized enzyme systems. Chem 4, 1022–1034 (2018).

Article  CAS  Google Scholar 

Sun, Q. et al. Pore environment control and enhanced performance of enzymes infiltrated in covalent organic frameworks. J. Am. Chem. Soc. 140, 984–992 (2018).

Article  CAS  PubMed  Google Scholar 

Lyu, F., Zhang, Y., Zare, R. N., Ge, J. & Liu, Z. One-pot synthesis of protein-embedded metal−organic frameworks with enhanced biological activities. Nano Lett. 14, 5761–5765 (2014).

Article  CAS  PubMed  Google Scholar 

Liang, K. et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat. Commun. 6, 7240 (2015).

Article  CAS  PubMed  Google Scholar 

Li, M. et al. Fabricating covalent organic framework capsules with commodious microenvironment for enzymes. J. Am. Chem. Soc. 142, 6675–6681 (2020).

Article  CAS  PubMed  Google Scholar 

Zheng, Y. et al. Green and scalable fabrication of high-performance biocatalysts using covalent organic frameworks as enzyme carriers. Angew. Chem. Int. Ed. 61, e202208744 (2022).

Article  CAS  Google Scholar 

Gao, R. et al. Mechanochemistry-guided reticular assembly for stabilizing enzymes with covalent organic frameworks. Cell Rep. Phys. Sci. 3, 101153 (2022).

Article  CAS  Google Scholar 

Hu, C. et al. Defect-induced activity enhancement of enzyme-encapsulated metal-organic frameworks revealed in microfluidic gradient mixing synthesis. Sci. Adv. 6, eaax5785 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang, W. et al. Enhanced activity of enzymes encapsulated in hydrophilic metal–organic frameworks. J. Am. Chem. Soc. 141, 2348–2355 (2019).

Article  CAS  PubMed  Google Scholar 

Tong, L. et al. Atomically unveiling the structure-activity relationship of biomacromolecule-metal-organic frameworks symbiotic crystal. Nat. Commun. 13, 951 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, X. et al. Packaging and delivering enzymes by amorphous metal-organic frameworks. Nat. Commun. 10, 5165 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Feng, Y. et al. Defect engineering of enzyme-embedded metal-organic frameworks for smart cargo release. Chem. Eng. J. 439, 135736 (2022).

Article  CAS  Google Scholar 

Wu, X. et al. A versatile competitive coordination strategy for tailoring bioactive zeolitic imidazolate framework composites. Small 17, e2007586 (2021).

Article  PubMed 

留言 (0)

沒有登入
gif