Generation of iPSC-derived human forebrain organoids assembling bilateral eye primordia

Mariani, J. & Vaccarino, F. M. Breakthrough moments: Yoshiki Sasai’s discoveries in the third dimension. Cell Stem Cell 24, 837–838 (2019).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Giandomenico, S. L., Sutcliffe, M. & Lancaster, M. A. Generation and long-term culture of advanced cerebral organoids for studying later stages of neural development. Nat. Protoc. 16, 579–602 (2021).

Article  CAS  PubMed  Google Scholar 

Bergmann, S. et al. Blood-brain-barrier organoids for investigating the permeability of CNS therapeutics. Nat. Protoc. 13, 2827–2843 (2018).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Gabriel, E. et al. CPAP promotes timely cilium disassembly to maintain neural progenitor pool. EMBO J. 35, 803–819 (2016).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Gabriel, E. et al. Human brain organoids assemble functionally integrated bilateral optic vesicles. Cell Stem Cell 28, 1740–1757.e8 (2021).

Article  CAS  PubMed  Google Scholar 

Gopalakrishnan, J. The emergence of stem cell-based brain organoids: trends and challenges. BioEssays 41, e1900011 (2019).

Article  PubMed  Google Scholar 

Ramani, A. et al. SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J. 39, e106230 (2020).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Sloan, S. A., Andersen, J., Pașca, A. M., Birey, F. & Pașca, S. P. Generation and assembly of human brain region-specific three-dimensional cultures. Nat. Protoc. 13, 2062–2085 (2018).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Quadrato, G. et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545, 48–53 (2017).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Goranci-Buzhala, G. et al. Rapid and efficient invasion assay of glioblastoma in human brain organoids. Cell Rep. 31, 107738 (2020).

Article  CAS  PubMed  Google Scholar 

Birey, F. et al. Assembly of functionally integrated human forebrain spheroids. Nature 545, 54–59 (2017).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Huschke, E. Uber einige streitpunkte aus der anatomie des auges [German]. Z. Opthalmol. 4, 273–295 (1835).

Google Scholar 

Pander, H. Beiträge zur Entwickelungsgeschichte des Hühnchens im Eye [German] (1817).

Adelmann, H. Marcello Malpighi and the Evolution of Embryology Vol. 3 (Cornell Univ. Press, 1966).

Zhong, X. et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat. Commun. 5, 4047 (2014).

Article  CAS  PubMed  Google Scholar 

Capowski, E. E. et al. Reproducibility and staging of 3D human retinal organoids across multiple pluripotent stem cell lines. Development 146, dev171686 (2019).

PubMed Central  PubMed  Google Scholar 

Nakano, T. et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10, 771–785 (2012).

Article  CAS  PubMed  Google Scholar 

Cowan, C. S. et al. Cell types of the human retina and its organoids at single-cell resolution. Cell 182, 1623–1640.e34 (2020).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Vergara, M. N. et al. Three-dimensional automated reporter quantification (3D-ARQ) technology enables quantitative screening in retinal organoids. Development 144, 3698–3705 (2017).

CAS  PubMed Central  PubMed  Google Scholar 

Meyer, J. S. et al. Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells 29, 1206–1218 (2011).

Article  CAS  PubMed  Google Scholar 

Eldred, K. C. et al. Thyroid hormone signaling specifies cone subtypes in human retinal organoids. Science 362, eaau6348 (2018).

Article  PubMed Central  PubMed  Google Scholar 

Eldred, K. C. & Reh, T. A. Human retinal model systems: strengths, weaknesses, and future directions. Dev. Biol. 480, 114–122 (2021).

Article  CAS  PubMed  Google Scholar 

Fligor, C. M. et al. Extension of retinofugal projections in an assembled model of human pluripotent stem cell-derived organoids. Stem Cell Rep. 16, 2228–2241 (2021).

Article  CAS  Google Scholar 

Graw, J. Eye development. Curr. Top. Dev. Biol. 90, 343–386 (2010).

Article  PubMed  Google Scholar 

Rao, R. C., Stern, J. H. & Temple, S. The eyeball’s connected to the brain ball. Cell Stem Cell 28, 1675–1677 (2021).

Article  CAS  PubMed  Google Scholar 

Fuhrmann, S. Eye morphogenesis and patterning of the optic vesicle. Curr. Top. Dev. Biol. 93, 61–84 (2010).

Article  PubMed Central  PubMed  Google Scholar 

Adler, R. & Canto-Soler, M. V. Molecular mechanisms of optic vesicle development: complexities, ambiguities and controversies. Dev. Biol. 305, 1–13 (2007).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Dupacova, N., Antosova, B., Paces, J. & Kozmik, Z. Meis homeobox genes control progenitor competence in the retina. Proc. Natl Acad. Sci. USA 118, e2013136118 (2021).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Mann, I. C. The Development of the Human Eye 1st edn (Univ. Press, 1928).

O’Rahilly, R. The early development of the eye in staged human embryos. Contrib. Embryol. 38, 1–42 (1966).

Google Scholar 

O’Rahilly, R. The prenatal development of the human eye. Exp. Eye Res. 21, 93–112 (1975).

Article  PubMed  Google Scholar 

Gabriel, E. & Gopalakrishnan, J. Generation of iPSC-derived human brain organoids to model early neurodevelopmental disorders. J. Vis. Exp. 14, 55372 (2017).

Google Scholar 

Gabriel, E. et al. Recent zika virus isolates induce premature differentiation of neural progenitors in human brain organoids. Cell. Stem Cell. 20, 397–406.e5 (2017).

Article  CAS  PubMed  Google Scholar 

Zhang, W. et al. Modeling microcephaly with cerebral organoids reveals a WDR62-CEP170-KIF2A pathway promoting cilium disassembly in neural progenitors. Nat. Commun. 10, 2612 (2019).

Article  PubMed Central  PubMed  Google Scholar 

Rosen, D. & Mahabadi, N. Embryology, Optic Cup (StatPearls Publishing LLC, updated 8 May 2022); https://www.ncbi.nlm.nih.gov/books/NBK545150/

Cvekl, A. & Wang, W. L. Retinoic acid signaling in mammalian eye development. Exp. Eye Res. 89, 280–291 (2009).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Janesick, A., Wu, S. C. & Blumberg, B. Retinoic acid signaling and neuronal differentiation. Cell. Mol. Life Sci. 72, 1559–1576 (2015).

Article  CAS  PubMed  Google Scholar 

Morizane, A., Doi, D., Kikuchi, T., Nishimura, K. & Takahashi, J. Small-molecule inhibitors of bone morphogenic protein and activin/nodal signals promote highly efficient neural induction from human pluripotent stem cells. J. Neurosci. Res. 89, 117–126 (2011).

Article  CAS  PubMed  Google Scholar 

Jin, M., Yuan, Q., Li, S. & Travis, G. H. Role of LRAT on the retinoid isomerase activity and membrane association of Rpe65. J. Biol. Chem. 282, 20915–20924 (2007).

Article  CAS  PubMed  Google Scholar 

Hu, J. & Bok, D. The use of cultured human fetal retinal pigment epithelium in studies of the classical retinoid visual cycle and retinoid-based disease processes. Exp. Eye Res. 126, 46–50 (2014).

Article  CAS  PubMed  Google Scholar 

Francis, P. J. Genetics of inherited retinal disease. J. R. Soc. Med. 99, 189–191 (2006).

Article  PubMed Central  PubMed  Google Scholar 

Takagi, S. et al. Evaluation of transplanted autologous induced pluripotent stem cell-derived retinal pigment epithelium in exudative age-related macular degeneration. Ophthalmol. Retin. 3, 850–859 (2019).

Article  Google Scholar 

Dahl-Jensen, S. & Grapin-Botton, A. The physics of organoids: a biophysical approach to understanding organogenesis. Development 144, 946–951 (2017).

Article 

留言 (0)

沒有登入
gif