Negative Impact of Unstable Spiromesifen Resistance on Fitness of Tetranychus urticae (Acari: Tetranychidae)

Abbas N, Shah RM, Shad SA, Azher F (2016a) Dominant fitness costs of resistance to fipronil in Musca domestica Linnaeus (Diptera: Muscidae). Vet Parasitol 226:78–82. https://doi.org/10.1016/j.vetpar.2016.06.035

Article  CAS  PubMed  Google Scholar 

Abbas N, Shah RM, Shad SA, Iqbal N, Razaq M (2016b) Biological trait analysis and stability of lambda-cyhalothrin resistance in the house fly, Musca domestica L. (Diptera: Muscidae). Parasitol Res 115(5):2073–2080. https://doi.org/10.1007/s00436-016-4952-2

Article  PubMed  Google Scholar 

Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18(2):265–267. https://doi.org/10.1093/jee/18.2.265a

Article  CAS  Google Scholar 

Abo-Elmaged TM, Ali AM, Abdel-Rahman MA, Abd-Allah AH (2021) Activity of the two spotted spider mite, Tetranychus urticae (Koch) (Acari) infesting cucumber plants in upper Egypt. Int J Trop Insect Sci 41(1):463–469. https://doi.org/10.1007/s42690-020-00232-6

Article  Google Scholar 

Abubakar M, Ali H, Shad SA, Anees M, Binyameen M (2021) Trichlorfon resistance: its stability and impacts on biological parameters of Bactrocera zonata (Diptera: Tephritidae). Appl Entomol Zool 56:473–482. https://doi.org/10.1007/s13355-021-00754-6

Article  CAS  Google Scholar 

Adesanya AW, Lavine MD, Moural TW, Lavine LC, Zhu F, Walsh DB (2021) Mechanisms and management of acaricide resistance for Tetranychus urticae in agroecosystems. J Pest Sci 94:639–663. https://doi.org/10.1007/s10340-021-01342-x

Article  Google Scholar 

Ahmad MJ, Mohiudin S, Manzar A, Sherwani A (2020) Laboratory evaluation of anthocorid bug, Blaptostethus pallescens Poppius (Heteroptera: Anthocoridae) against European red mite, Panonychus ulmi (Koch) and two spotted spider mite, Tetranychus urticae Koch infesting in apple. J Entomol Zool Stud 8(2):1750–1755

Google Scholar 

Ahmadi Z, Saber M, Mahdavinia GR (2020) Nanoencapsulation of clofentezine with enhanced acaricidal activity against the two spotted mite, Tetranychus urticae Koch (Acari: Tetranychidae). Toxin Rev 40(4):962–970. https://doi.org/10.1080/15569543.2020.1812082

Alam M, Shah RM, Shad SA, Binyameen M (2020) Fitness cost, realized heritability and stability of resistance to spiromesifen in house fly, Musca domestica L. (Diptera: Muscidae). Pestic Biochem Physiol 168:104648. https://doi.org/10.1016/j.pestbp.2020.104648

Article  CAS  PubMed  Google Scholar 

Anonymous (1998) Statistix for Windows user’s manual. Analytical Software Tallahassee, Florida

Anonymous (2021) Pesticide registered list. Agri-Punjab. http://www.agripunjab.gov.pk/system/files/PESTICIDE%20REGISTERED%20LIST%20-%20Form%201.pdf Accessed 7 January 2021

Badieinia F, Khajehali J, Nauen R, Dermauw W, Van Leeuwen T (2020) Metabolic mechanisms of resistance to spirodiclofen and spiromesifen in Iranian populations of Panonychus ulmi. Crop Prot 134:105166. https://doi.org/10.1016/j.cropro.2020.105166

Banazeer A, Shad SA, Afzal MBS (2020) Laboratory induced bifenthrin resistance selection in Oxycarenus hyalinipennis (Costa) (Hemiptera: Lygaeidae): Stability, cross-resistance, dominance and effects on biological fitness. Crop Prot 132:105–107. https://doi.org/10.1016/j.cropro.2020.105107

Article  CAS  Google Scholar 

Bielza P, Moreno I, Belando A, Grávalos C, Izquierdo J, Nauen R (2019) Spiromesifen and spirotetramat resistance in field populations of Bemisia tabaci Gennadius in Spain. Pest Manag Sci 75(1):45–52. https://doi.org/10.1002/ps.5144

Article  CAS  PubMed  Google Scholar 

Boykin L, Campbell W (1984) Wind dispersal of the twospotted spider mite (Acari: Tetranychidae) in North Carolina peanut fields. Environ Entomol 13(1):221–227. https://doi.org/10.1093/ee/13.1.221

Article  Google Scholar 

Cao G, Han Z (2006) Tebufenozide resistance selected in Plutella xylostella and its cross-resistance and fitness cost. Pest Manag Sci 62(8):746–751. https://doi.org/10.1002/ps.1234

Article  CAS  PubMed  Google Scholar 

Crow JF (1957) Genetics of insect resistance to chemicals. Annu Rev Entomol 2(1):227–246. https://doi.org/10.1146/annurev.en.02.010157.001303

Article  CAS  Google Scholar 

Dekeyser MA (2005) Acaricide mode of action. Pest Manag Sci 61(2):103–110. https://doi.org/10.1002/ps.994

Article  CAS  PubMed  Google Scholar 

Ejaz M, Shad SA (2017) Spirotetramat resistance selected in the Phenacoccus solenopsis (Homoptera: Pseudococcidae): cross-resistance patterns, stability, and fitness costs analysis. J Econ Entomol 110(3):1226–1234. https://doi.org/10.1093/jee/tox045

Article  CAS  PubMed  Google Scholar 

Eleawa M, Waked DA (2019) Fitness cost associated with acaricides inheritance resistance in the spider mite, Tetranychus urticae Koch. Egypt J Agric Res 97(2):571–577. https://doi.org/10.21608/ejar.2019.152542

Article  Google Scholar 

Flexner J, Theiling K, Croft B, Westigard P (1989) Fitness and immigration: factors affecting reversion of organotin resistance in the twospotted spider mite (Acari: Tetranychidae). J Econ Entomol 82(4):996–1002. https://doi.org/10.1093/jee/82.4.996

Article  Google Scholar 

Foster S, Young S, Williamson M, Duce I, Denholm I, Devine G (2003) Analogous pleiotropic effects of insecticide resistance genotypes in peach–potato aphids and houseflies. Heredity 91(2):98–106. https://doi.org/10.1038/sj.hdy.6800285

Article  CAS  PubMed  Google Scholar 

Franzin ML, Botti JMC, Fadini MAM, Melo JOF, Mendes SM (2020) Multiple infestations induce direct defense of maize to Tetranychus urticae (Acari: Tetranychidae). Fla Entomol 103(3):307–315

Article  Google Scholar 

Groeters FR, Tabashnik BE, Finson N, Johnson MW (1993) Resistance to Bacillus thuringiensis affects mating success of the diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol 86(4):1035–1039. https://doi.org/10.1093/jee/86.4.1035

Article  Google Scholar 

Heckel DG (1994) The complex genetic basis of resistance to Bacillus thuringiensis toxin in insects. Biocontrol Sci Technol 4(4):405–417. https://doi.org/10.1080/09583159409355351

Article  Google Scholar 

Heikal HM, Bhullar MB, Kaur P (2020) Acaricide resistance in field collected two-spotted spider mite, Tetranychus urticae from Okra in Punjab. Indian J Ecol 47(2):590–593

Google Scholar 

Herron GA, Woolley LK, Langfield KL, Chen Y (2018) First detection of etoxazole resistance in Australian two-spotted mite Tetranychus urticae Koch (Acarina: Tetranychidae) via bioassay and DNA methods. Austral Entomol 57(3):365–368. https://doi.org/10.1111/aen.12290

Article  Google Scholar 

IRAC (2021) https://irac-online.org/modes-of-action/. Accessed 7 January 2021

Jia B, Liu Y, Zhu YC, Liu X, Gao C, Shen J (2009) Inheritance, fitness cost and mechanism of resistance to tebufenozide in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Pest Manag Sci 65(9):996–1002. https://doi.org/10.1002/ps.1785

Article  CAS  PubMed  Google Scholar 

Khadri SNEN, Srinivasa N (2020) Determining baseline susceptibility of Tetranychus urticae Koch (Acari: Tetranychidae) to acaricides by generation method. J Entomol Zool Stud 8(3):1416–1423

Google Scholar 

Khan MA, Khaliq A, Subhani MN, Saleem MW (2008) Incidence and development of Thrips tabaci and Tetranychus urticae on field grown cotton. Int J Agric Biol 10:232–234

Google Scholar 

Khan HMU, Banazeer A, Afzal MBS, Shad SA (2021) Evaluation of resistance stability and fitness costs in dimethoate-selected strain of Oxycarenus hyalinipennis Costa (Hemiptera: Lygaeidae). J Asia Pac Entomol 24(3):798–804. https://doi.org/10.1016/j.aspen.2021.07.002

Article  Google Scholar 

Khatak S (2020) Incidence of Tetranychus urticae Koch on tomato (Lycopersicon esculentum Mill.) under screen house conditions. J Entomol Zool Stud 8(3):758–761

Google Scholar 

Kim Y-J, Kloos S, Romeis J, Meissle M (2020) Effects of mCry51Aa2-producing cotton on the non-target spider mite Tetranychus urticae and the predatory bug Orius majusculus. J Pest Sci 94:351–362. https://doi.org/10.1007/s10340-020-01260-4

Kliot A, Ghanim M (2012) Fitness costs associated with insecticide resistance. Pest Manag Sci 68(11):1431–1437. https://doi.org/10.1002/ps.3395

Article  CAS  PubMed  Google Scholar 

Kontsedalov S, Gottlieb Y, Ishaaya I, Nauen R, Horowitz R, Ghanim M (2009) Toxicity of spiromesifen to the developmental stages of Bemisia tabaci biotype B. Pest Manag Sci 65(1):5–13. https://doi.org/10.1002/ps.1636

Article  CAS  PubMed  Google Scholar 

LeOra-Software (2006) POLO-PC, A user’s guide to probit or logit analysis. LeOra Software, Berkeley, CA, USA. Accessed 7 January 2021

Litchfield JJ, Wilcoxon F (1949) A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 96(2):99–113

CAS  PubMed  Google Scholar 

Lueke B et al (2020) Identification and functional characterization of a novel acetyl-CoA carboxylase mutation associated with ketoenol resistance in Bemisia tabaci. Pestic Biochem Physiol 166:104583. https://doi.org/10.1016/j.pestbp.2020.104583

Mable B, Pree D (1992) Stability of dicofol resistance in populations of European red mite (Acari: Tetranychidae) on apples in southern Ontario. J Econ Entomol 85(3):642–650. https://doi.org/10.1093/jee/85.3.642

Article  CAS  Google Scholar 

Mansoor MM, Shad SA (2020) Inheritance of polygenic but stable pyriproxyfen resistance in a bio-control agent Chrysoperla carnea (Neuroptera: Chrysopidae): Cross-resistance and realized heritability. Pest Manag Sci 76(12):4009–4017. https://doi.org/10.1002/ps.5952

Article  CAS  PubMed  Google Scholar 

Marcic D, Ogurlic I, Mutavdzic S, Peric P (2010) The effects of spiromesifen on life history traits and population growth of two-spotted spider mite (Acari: Tetranychidae). Exp Appl Acarol 50(3):255–267. https://doi.org/10.1007/s10493-009-9316-5

Article  PubMed  Google Scholar 

Migeon A, Nouguier E, Dorkeld F (2010) Spider Mites Web: a comprehensive database for the Tetranychidae. In: Sabelis M. BJe (ed) Trends in acarology. Springer, Dordrecht, 557–560

Nauen R, Konanz S (2005) Spiromesifen as a new chemical option for resistance management in whiteflies and spider mites. Pflanzenschutz-Nachr Bayer 58(3):485–502

CAS  Google Scholar 

Nicastro RL, Sato ME, Da Silva MZ (2010) Milbemectin resistance in Tetranychus urticae (Acari: Tetranychidae): selection, stability and cross-resistance to abamectin. Exp Appl Acarol 50(3):231–241. https://doi.org/10.1007/s10493-009-9304-9

Article  CAS  PubMed  Google Scholar 

Nicastro RL, Sato ME, da Silva MZ (2011) Fitness costs associated with milbemectin resistance in the two-spotted spider mite Tetranychus urticae. Int J Pest Manag 57(3):223–228. https://doi.org/10.1080/09670874.2011.574745

Article  Google Scholar 

Nicastro RL, Sato ME, Arthur V, Da Silva MZ (2013) Chlorfenapyr resistance in the spider mite Tetranychus urticae: stability, cross-resistance and monitoring of resistance. Phytoparasitica 41(5):503–513. https://doi.org/10.1007/s12600-013-0309-x

Article  CAS  Google Scholar 

Palumbo JC (2004) Comparative efficacy of Oberon®(spiromesifen) against Bemisia whiteflies in spring cantaloupes. doi:https://hdl.handle.net/10150/215232

Patel AD, Ghetiya LV, Abhishek S (2016) Bionomics of spider mite (Tetranychus urticae Koch.) on marigold (Tagetes SPP.). J Appl Biosci 42(1):23–29

Google Scholar 

Patil DL, Patel K, Toke N, Ambule AT (2014) Biology of Tetranychus urticae Koch (Acarina: Tetranychidae) on carnation under laboratory conditions. Int J Plant Prot 7(2):334–338. https://doi.org/10.15740/HAS/IJPP/7.2/334-338

Article  Google Scholar 

Pottelberge SV, Leeuwen TV, Khajehali J, Tirry L (2009) Genetic and biochemical analysis of a laboratory-selected spirodiclofen-resistant strain of Tetranychus urticae Koch (Acari: Tetranychidae). Pest Manag Sci 65(4):358–366.

留言 (0)

沒有登入
gif