Crinum jagus: antiproliferative studies of extracts on HepG2 cell line and in silico assessment of phytoconstituents as potential inhibitors of p53–mortalin interaction

Mohan L (2020) Plant-based drugs as an adjuvant to cancer chemotherapy. In: Akram M (ed) Alternative medicine—update, IntechOpen, London

Hussein RA, El-Anssary AA (2018) Plants secondary metabolites: the key drivers of the pharmacological actions of medicinal plants. In: Builders PF (ed) Herbal medicine, IntechOpen, London

Calderón-Montaño JM, Martínez-Sánchez SM, Jiménez-González V, Burgos-Morón E, Guillén-Mancina E, Jiménez-Alonso JJ, Díaz-Ortega P, García F, Aparicio A, López-Lázaro M (2021) Screening for selective anticancer activity of 65 extracts of plants collected in western Andalusia. Spain Plants (Basel) 10(10):2193

PubMed  Google Scholar 

Wani MC, Taylor HL, Wall ME, Coggon P, Mcphail AT (1971) Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 54:2347–2360

Google Scholar 

Puri S, Sahal D, Sharma UA (2021) Conversation between hyphenated spectroscopic techniques and phytometabolites from medicinal plants. Anal Sci Adv, pp 1–15

Špánik I, Machyňáková A (2018) Recent applications of gas chromatography with high-resolution mass spectrometry. J Sep Sci 41(1):163–179. https://doi.org/10.1002/jssc.201701016

Article  CAS  PubMed  Google Scholar 

Moldoveanu SC, David V (2018) Derivatization methods in GC and GC/MS. In: Kusch P (ed) Gas chromatography—derivatization, sample preparation, application, IntechOpen, London

Mukthinuthalapati VVPK, Sewram V, Ndlovu N, Kimani S, Abdelaziz AO, Chiao EY, Abou-Alfa GK (2021) Hepatocellular carcinoma in sub-Saharan Africa. J Glo Oncol 7:756–766

Article  Google Scholar 

Mak D, Kramvis A (2021) Epidemiology and aetiology of hepatocellular carcinoma in Sub-Saharan Africa. Hepatoma Res 7:39

Google Scholar 

Pham MQ, Tran THV, Pham QL, Gairin JE (2019) In silico analysis of the binding properties of solasonine to mortalin and p53, and in vitro pharmacological studies of its apoptotic and cytotoxic effects on human HepG2 and Hep3b hepatocellular carcinoma cells. Fundam Clin Pharmacol 33(4):385–396

Article  CAS  PubMed  Google Scholar 

Pham MQ, Thi THL, Pham QL, Le LT, Dao HT, Dang TLT, Pham DN, Thi HHP (2021) In silico assessment and molecular docking studies of some phyto-triterpenoid for potential disruption of mortalin-p53 interaction. Processes 9:1983. https://doi.org/10.3390/pr9111983

Article  CAS  Google Scholar 

Hartati FK, Djauhari AB (2020) Potential of black rice (Oryza sativa Ll) as anticancer through mortalin-p53 complex inhibitors. Biointerface Res Appl Chem 10(5):6174–6181

Article  CAS  Google Scholar 

Nigam N, Grover A, Goyal S, Katiyar SP, Bhargava P, Wang P, Sundar D, Kaul SC, Wadhwa R (2015) Targeting mortalin by embelin causes activation of tumor suppressor p53 and deactivation of metastatic signaling in human breast cancer cells. PLoS ONE 10(9):10138192. https://doi.org/10.1371/journal.pone.0138192

Article  CAS  Google Scholar 

Teng M, Hu C, Yang B, Xiao W, Zhou Q, Li Y, Li Z (2021) Salvianolic acid B targets mortalin and inhibits the migration and invasion of hepatocellular carcinoma via the RECK/STAT3 pathway. Cancer Cell Int 21:654. https://doi.org/10.1186/s12935-021-02367-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mohammed ZK, Daja A, Hamza HG, Gidado A, Hussaini IM (2014) Ethnomedicinal survey of folkloric plants used in managing breast cancers by the traditional medical practitioners of North–East Nigeria. J Med Appl Biosci 6(1):29–43

Google Scholar 

Shawky E, Takla SS, Hammoda HM, Darwish FA (2018) Evaluation of the influence of green extraction solvents on the cytotoxic activities of Crinum (Amaryllidaeae) alkaloid extracts using in-vitro-in-silico approach. J Ethnopharmacol 227:139–149

Article  PubMed  Google Scholar 

Yui S, Mikami M, Kitahara M, Yamazaki M (1998) The inhibitory effect of lycorine on tumor cell apoptosis induced by polymorphonuclear leukocyte-derived calprotectin. Immunopharmacology 40(2):151–162

Article  CAS  PubMed  Google Scholar 

Ghosal S, Saini KS, Razdan S (1985) Crinum alkaloids. Their chemistry and biology. Phytochemistry 24(10):2141–2156

Article  CAS  Google Scholar 

Yu M, Chen Y, Liu Y, Yu M, Xu Y, Wang B (2019) Efficient polysaccharides from Crinum asiaticum L.’s structural characterization and anti-tumor effect. Saudi J Biol Sci 26(8):2085–2090

Article  PubMed  PubMed Central  Google Scholar 

Nair JJ, Campbell WE, Gammon DW, Albrecht CF, Viladomat F, Codina C, Bastida J (1998) Alkaloids from Crinum delagoense. Phytochemistry 49(8):2539–2543

Article  CAS  Google Scholar 

Hanh TTH, Anh DH, Huong PTT, Thanh NV, Trung NQ, Cuong TV, Mai NT, Cuong NT, Cuong NX, Nam NH, Minh CV (2018) Crinane, augustamine, and β-carboline alkaloids from Crinum latifolium. Phytochemistry Letters pp 27–30.

Ka S, Masi M, Merindol N, Di Lecce R, Plourde MB, Seck M, Marcin G, Pescitelli G, Desgagne-Penix I, Evidente A (2020) Gigantelline, gigantellinine and gigancrinine, cherylline-and crinine-type alkaloids isolated from Crinum jagus with anti- acetylcholinesterase activity. Phytochemistry 175:112390

Article  CAS  PubMed  Google Scholar 

Kouadio ATG, Kabran GRM, Mamyrbekova-Bekro JA, Virieux D, Pirat JL, Bekro YA (2020) Total alkaloids and in vitro antioxidant activity of Crinum jagus L. (Amaryllidaceae) organs from Côte d’Ivoire. Int J Green Herbal Chem 4:451–453

Google Scholar 

Mvongo C, Kamgang R, Minka CS, Mfopa A, Oyono JE (2014) Effect of ethanol/water extract of Crinum jagus on glycemia, lipids parameters and body weight gain on high-sugar diet fed rats. Indian J Res Pharm Biotech 2(6):1439–1445

Google Scholar 

Akintola AO, Kehinde AO, Adebiyi OE, Ademowo OG (2013) Anti-tuberculosis activities of the crude methanolic extract and purified fractions of the bulb of Crinum jagus. Niger J Physiol Sci 28(2):135–140

CAS  PubMed  Google Scholar 

Salawu KM, Atunwa SA, Eniayewu IO (2020) Cytotoxicity and antiproliferative studies of Crinum jagus L (Amaryllidaceae) bulb extract. Bima J Sci Technol 4(1):131–140

Google Scholar 

Nawaz A, Jamal A, Arif A, Parveen Z (2021) In vitro cytotoxic potential of Solanum nigrum against human cancer cell lines. Saudi J Biol Sci 28:4786–4792

Article  CAS  PubMed  PubMed Central  Google Scholar 

Georgieva K, Popova M, Dimitrova L, Trusheva B, Thanh LN, Phuong DTL, Lien NTP, Najdenski H, Bankova V (2019) Phytochemical analysis of Vietnamese propolis produced by the stingless bee Lisotrigona cacciae. PLoS ONE 14(4):e0216074. https://doi.org/10.1371/journal.pone.0216074

Article  CAS  PubMed  PubMed Central  Google Scholar 

Faboro EO, Wei L, Liang S, McDonald AG, Obafemi CA (2016) Phytochemical Analyzes from the leaves of Bryophyllum pinnatum. European J Med Plants 14(3):1–10

Article  Google Scholar 

Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7(1):42717

Article  PubMed  PubMed Central  Google Scholar 

Vaishnavi K, Saxena N, Shah N, Singh R, Manjunath K, Uthayakumar M, Kanaujia SP, Kaul SC, Sekar K, Wadhwa R (2012) Differential activities of the two closely related withanolides, withaferin a and withanone: bioinformatics and experimental evidences. PLoS ONE 7:e44419

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33. https://doi.org/10.1186/1758-2946-3-33

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grover A, Priyandoko D, Gao R, Shandilya A, Widodo N, Bisaria VS, Kaul SC, Wadhwa R, Sundar D (2012) Withanone binds to mortalin and abrogates mortalin–p53 complex: computational and experimental evidence. Int J Biochem Cell Biol 44:496–504

Article  CAS  PubMed  Google Scholar 

Amick J, Schlanger SE, Wachnowsky C, Moseng MA, Emerson CC, Dare M, Luo WI, Ithychanda SS, Nix JC, Cowan JA, Page RC, Misra S (2014) Crystal structure of the nucleotide-binding domain of mortalin, the mitochondrial Hsp70 chaperone. Protein Sci 23:833–842

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grosdidier A, Zoete V, Michielin O (2011) SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res 39:270–277

Article  Google Scholar 

Wafa T, Mohamed K (2020) Molecular docking study of COVID-19 main protease with clinically approved drugs. ChemRxiv. https://doi.org/10.26434/chemrxiv.12318689.v1

Article  Google Scholar 

Thusyanthan J, Wickramaratne NS, Senathilake KS, Rajagopalan U, Tennekoon KH, Thabrew I, Samarakoon SR (2022) Cytotoxicity against Human Hepatocellular Carcinoma (HepG2) cells and anti-oxidant activity of selected endemic or medicinal plants in Sri Lanka. Adv Pharmacol Pharma Sci. https://doi.org/10.1155/2022/6407688

Article  Google Scholar 

Aliyu-Amoo H, Isa HI, Njoya EM, McGaw LJ (2021) Antiproliferative effect of extracts and fractions of the root of Terminalia avicennioides (Combretaceae) Guill and Perr on HepG2 and Vero cell lines. Clin. Phytosci 7:71. https://doi.org/10.1186/s40816-021-00307-y

Article  CAS  Google Scholar 

Koolaji N, Shammugasamy B, Schindeler A, Dong Q, Dehghani F, Valtchev P (2020) Citrus peel flavonoids as potential cancer prevention agents. Curr Dev Nutr 4(5):nzaa025. https://doi.org/10.1093/cdn/nzaa025

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ravi L, Krishnan K (2017) Cytotoxic potential of n-hexadecanoic acid extracted from Kigelia pinnata leaves. Asian J Cell Biol 12:20–27

Article  CAS  Google Scholar 

Likhitwitayawuid K, Angerhofer C, Chai H, Pezzuto JM, Cordel G, Ruangrungsi N (1993) Cytotoxic and antimalarial alkaloids from the bulbs of Crinum amabile. J Nat Prod 56(8):1331–1338

Article  CAS  PubMed  Google Scholar 

Khumkhrong P, Piboonprai K, Chaichompoo W, Pimtong W, Khongkow M, Namdee K, Jantimaporn A, Japrung D, Asawapirom U, Suksamrarn A, Iempridee T (2019) Crinamine induces apoptosis and inhibits proliferation, migration, and angiogenesis in cervical cancer SiHa cells. Biomolecules 9(9):494. https://doi.org/10.3390/biom9090494

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zafar F, Gupta A, Thangavel K, Khatana K, Sani AA, Ghosal A, Tandon P, Nishat N (2020) Physicochemical and pharmacokinetic analysis of anacardic acid derivatives. ACS Omega 5:6021–6030

Article  CAS  PubMed 

留言 (0)

沒有登入
gif