Mitigation of peanut allergenic reactivity by combined processing: Pressured heating and enzymatic hydrolysis

Among food allergens, peanut is one of the most critical. This study evaluates peanut allergenic features after the combination of heat, pressure, and enzymatic digestion under sonication, by immunodetection using serum IgE of sensitized patients and mass-spectroscopy. In the studied population, there was a predominance of patients with sensitization to Ara h 9 (nsLTP) followed by sensitization to seed storage proteins (Sprot, Ara h 1, 2, 3, and 6). The Sprot sensitized patients showed higher reactivity. The enzyme E5 was efficient for inducing protein fragmentation and allergenic reactivity reduction when it was used combined with pressured heating treatments such as autoclave and Controlled Instantaneous Depressurization (DIC). Only a few Ara h 1 and Ara h 3 peptides were identified after enzymatic digestion of DIC peanut samples. The combination of pressured heating treatments and enzymatic hydrolysis was the most efficient method to strongly mitigate or even eliminate the allergenic potential of peanut. Our findings set a possibility for a group of patients in which their allergy could be treated with a processed less-allergenic peanut and consequently less risky, more easy and quicker desensitization treatment.

Industrial relevance

The findings identify innovative thermal, pressure and enzymatic processing conditions highly effective to mitigate or even abolish the allergenic potency of peanut, which may be relevant for consumers, clinicians, regulatory agencies and the food industry. The applications of processed peanut with reduced IgE binding potency for tolerance induction might be a convenient strategy.

留言 (0)

沒有登入
gif