Characterization of the tribologically relevant cover layers formed on copper in oxygen and oxygen-free conditions

Bennett C. Meeting future copper demand. Available on https://copperalliance.org/resource/meeting-future-copper-demand/, 2019.

Mrowec S, Stoklosa A. Oxidation of copper at high temperatures. Oxid Met 3(3): 291–311 (1971)

Article  Google Scholar 

Hymes S W. Growth and stability of copper silicide thin films. Ph.D. Thesis. Ann Arbor (USA): Rensselaer Polytechnic Institute, 1999.

Google Scholar 

Bowden F P, Tabor D. The Friction and Lubrication of Solids. Oxford (UK): Clarendon Press, 1986.

MATH  Google Scholar 

Kragelski I W. Reibung und Verschleiss. München (Germany): Hanser, 1971. (in German)

Google Scholar 

O’Reilly M, Jiang X, Beechinor J T, Lynch S, NíDheasuna C, Patterson J C, Crean G M. Investigation of the oxidation behaviour of thin film and bulk copper. Appl Surf Sci 91(1–4): 152–156 (1995)

Article  Google Scholar 

Lee S K, Hsu H C, Tuan W H. Oxidation behavior of copper at a temperature below 300 °C and the methodology for passivation. Mater Res 19(1): 51–56 (2016)

Article  Google Scholar 

Lehmann J S, Schwaiger R, Rinke M, Greiner C. How tribo-oxidation alters the tribological properties of copper and its oxides. Adv Mater Inter 8(1): 2001673 (2021)

Article  Google Scholar 

Rau J S, Schmidt O, Schneider R, Debastiani R, Greiner C. Three regimes in the tribo-oxidation of high purity copper at temperatures of up to 150 °C. Adv Eng Mater 24(11): 2200518 (2022)

Article  Google Scholar 

Unutulmazsoy Y, Cancellieri C, Chiodi M, Siol S, Lin L C, Jeurgens L P H. In situ oxidation studies of Cu thin films: Growth kinetics and oxide phase evolution. J Appl Phys 127(6): 065101 (2020)

Article  Google Scholar 

Zhukov V, Popova I, Yates J T. Electron-stimulated oxidation of Al(111) by oxygen at low temperatures: Mechanism of enhanced oxidation kinetics. Phys Rev B 65(19): 195409 (2002)

Article  Google Scholar 

Peng J, Chen B L, Wang Z C, Guo J, Wu B H, Hao S Q, Zhang Q H, Gu L, Zhou Q, Liu Z, et al. Surface coordination layer passivates oxidation of copper. Nature 586(7829): 390–394 (2020)

Article  Google Scholar 

Zhou G W, Yang J C. Temperature effect on the Cu2O oxide morphology created by oxidation of Cu(001) as investigated by in situ UHV TEM. Appl Surf Sci 210(3–4): 165–170 (2003)

Article  Google Scholar 

Zhukov V P. Mathematical model of deoxidation of copper by solid carbon. Metallurgist 60(7): 771–775 (2016)

Article  Google Scholar 

Katayama T, Sekiba D, Mukai K, Yamashita Y, Komori F, Yoshinobu J. Adsorption states and dissociation processes of oxygen molecules on Cu(100) at low temperature. J Phys Chem C 111(41): 15059–15063 (2007)

Article  Google Scholar 

Rau J S, Balachandran S, Schneider R, Gumbsch P, Gault B, Greiner C. High diffusivity pathways govern massively enhanced oxidation during tribological sliding. Acta Mater 221: 117353 (2021)

Article  Google Scholar 

Zhou H J, Wu W P, Wu R N, Hu G M, Xia R. Effects of various conditions in cold-welding of copper nanowires: A molecular dynamics study. J Appl Phys 122(20): 204303 (2017)

Article  Google Scholar 

Steudel H. Werkstoff-handbuch Nichteisenmetalle. Düsseldorf (Germany): VDI-Verlag, 1960. (in German)

Google Scholar 

Miyoshi K. Aerospace mechanisms and tribology technology: Case studies. In: NASA Glenn Research Center, Cleveland, USA, 1999, 7: NASA/TM-107249.

Maier H J, Herbst S, Denkena B, Dittrich M A, Schaper F, Worpenberg S, Gustus R, Maus-Friedrichs W. Towards dry machining of titanium-based alloys: A new approach using an oxygen-free environment. Metals 10(9): 1161 (2020)

Article  Google Scholar 

Raumel S, Barienti K, Dencker F, Nürnberger F, Wurz M C. Einfluss von silan-dotierten umgebungsatmosphären auf tribologischen eigenschaften von titan. Tribol und Schmierungstechnik: https://doi.org/10.24053/TuS-2021-0002 (2021) (in German)

Jousten K, Wutz M, Adam H, Walcher W. Handbook of Vacuum Technology: Influence of Oxygen on the Tool Wear in Machining, 12th edn. Weinheim (Germany): Springer Verlag Wiesbaden, 2008.

Google Scholar 

Holländer U, Wulff D, Langohr A, Möhwald K, Maier H J. Brazing in SiH4-doped inert gases: A new approach to an environment friendly production process. Int J Pr Eng Man—GT 7: 1059–1071 (2020)

Google Scholar 

Kroke E, Müller A. Eigenschaften und Reaktionsverhalten von Silicium, Ph.D. Thesis. Germany: Bergakademie Freiberg, 2017.

Google Scholar 

Lützenkirchen-Hecht D, Wulff D, Wagner R, Frahm R, Holländer U, Maier H J. Thermal anti-oxidation treatment of CrNi-steels as studied by EXAFS in reflection mode: The influence of monosilane additions in the gas atmosphere of a continuous annealing furnace. J Mater Sci 49(15): 5454–5461 (2014)

Article  Google Scholar 

Deutsches Institut für Normung e.V. DIN 5401:2002–08 Wälzlager—Kugeln für wälzlager und allgemeinen Industriebedarf. DIN, 2002. (in German)

Deutsches Institut für Normung e.V. DIN EN ISO 21920–2:2022: Geometrical product specifications (GPS)—Surface texture: Profile method—Terms, definitions and surface texture parameters. Beuth Verlag GmbH, 2022.

Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6): 1564–1583 (1992)

Article  Google Scholar 

Deutsches Institut für Normung e.V. DIN EN ISO14577-1:2015 Metallische werkstoffe instrumentierte eindringprüfung zur bestimmung der härte und anderer werkstoffparameter DIN, 2015. (in German)

Deutsches Institut für Normung e.V. DIN EN ISO 25178-1:2016 Geometrische produktspezifikation für oberflächenbeschaffenheit. DIN, 2016. (in German)

US-ASTM. ASTM G99-17 Standard test method for wear testing with a pin-on-disk apparatus. ASTM, 2017.

Reichelt M, Cappella B. Comparative analysis of error sources in the determination of wear volumes of oscillating ball-on-plane tests. Frontiers in Mechanical Engineering 6: 25 (2020)

Article  Google Scholar 

Walker J, Umer J, Mohammadpour M, Theodossiades S, Bewsher S R, Offner G, Bansal H, Leighton M, Braunstingl M, Flesch H G. Asperity level characterization of abrasive wear using atomic force microscopy. P Roy Soc A-Math Phy 477(2250): 20210103 (2021)

Google Scholar 

Rigney D A, Karthikeyan S. The evolution of tribomaterial during sliding: A brief introduction. Tribol Lett 39(1): 3–7 (2010)

Article  Google Scholar 

Aghababaei R, Warner D H, Molinari J F. Critical length scale controls adhesive wear mechanisms. Nat Commun 7: 11816 (2016)

Article  Google Scholar 

Vakis A I, Yastrebov V A, Scheibert J, Nicola L, Dini D, Minfray C, Almqvist A, Paggi M, Lee S, Limbert G, et al. Modeling and simulation in tribology across scales: An overview. Tribol Int 125: 169–199 (2018)

Article  Google Scholar 

Leroy F, Rousseau B, Fuchs A H. Self-diffusion of n-alkanes in silicalite using molecular dynamics simulation: A comparison between rigid and flexible frameworks. Phys Chem Chem Phys 6(4): 775–783 (2004)

Article  Google Scholar 

Gunkelmann N, Bringa E M, Kang K, Ackland G J, Ruestes C J, Urbassek H M. Polycrystalline iron under compression: Plasticity and phase transitions. Phys Rev B 86(14): 144111 (2012)

Article  Google Scholar 

Gunkelmann N, Bringa E M, Rosandi Y. Molecular dynamics simulations of aluminum foams under tension: Influence of oxidation. J Phys Chem C 122(45): 26243–26250 (2018)

Article  Google Scholar 

Rosandi Y, Luu H T, Urbassek H M, Gunkelmann N. Molecular dynamics simulations of the mechanical behavior of alumina coated aluminum nanowires under tension and compression. RSC Adv 10(24): 14353–14359 (2020)

Article  Google Scholar 

Psofogiannakis G M, McCleerey J F, Jaramillo E, van Duin A C T. ReaxFF reactive molecular dynamics simulation of the hydration of Cu-SSZ-13 zeolite and the formation of Cu dimers. J Phys Chem C 119(12): 6678–6686 (2015)

Article  Google Scholar 

Paupitz R, Junkermeier C E, van Duin A C T, Branicio P S. Fullerenes generated from porous structures. Phys Chem Chem Phys 16(46): 25515–25522 (2014)

Article  Google Scholar 

Van Duin A C T, Strachan A, Stewman S, Zhang Q S, Xu X, Goddard W A. ReaxFFSiO reactive force field for silicon and silicon oxide systems. J Phys Chem A 107(19): 3803–3811 (2003)

Article  Google Scholar 

Van Duin A C T, Bryantsev V S, Diallo M S, Goddard W A, Rahaman O, Doren D J, Raymand D, Hermansson K. Development and validation of a ReaxFF reactive force field for Cu cation/water interactions and copper metal/metal oxide/metal hydroxide condensed phases. J Phys Chem A 114(35): 9507–9514 (2010)

Article  Google Scholar 

Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1): 1–19 (1995)

Article  MATH  Google Scholar 

Stukowski A. Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool. Model Simul Mater Sc 18(1): 015012 (2010)

Article  Google Scholar 

Gates-Rector S, Blanton T. The Powder Diffraction File: A quality materials characterization database. Powder Diffr 34(4): 352–360 (2019)

Article  Google Scholar 

Luo L L, Kang Y H, Liu Z Y, Yang J C, Zhou G W. Effect of oxygen pressure on the initial oxidation behavior of Cu and Cu-Au alloys. MRS Online Proc Libr 1318(1): 706 (2011)

Google Scholar 

Sufryd K, Ponweiser N, Riani P, Richter K W, Cacciamani G. Experimental investigation of the Cu-Si phase diagram at x(Cu) > 0.72. Intermetallics 19(10): 1479–1488 (2011)

Article  Google Scholar 

Spencer M J S, Nyberg G L, Robinson A W, Stampfl A P J. Adsorption of SiH4 on copper (110) and (111) surfaces. Surf Sci 505: 308–324 (2002)

Article  Google Scholar 

Cabrera A L, Kirner J F, Pierantozzi R. Si diffusion coating on steels by SiH4/H2 treatment for high temperature oxidation protection. J Mater Res 5(1): 74–82 (1990)

Article  Google Scholar 

Cabrera A L, Kirner J F, Armor J N. Oxidation protection for a variety of transition metals and copper via surface silicides formed with silane containing atmospheres. J Mater Res 6(1): 71–79 (1991)

Article  Google Scholar 

Chhun S, Gosset L G, Michelon J, Girault V, Vitiello J, Hopstaken M, Courtas S, Debauche C, Bancken P H L, Gaillard N, et al. Cu surface treatment influence on Si adsorption properties of CuSiN self-aligned barriers for sub-65 nm technology node. Microelectron Eng 83(11–12): 2094–2100 (2006)

Article  Google Scholar 

Graham A P, Hinch B J, Kochanski G P, McCash E M, Allison W. Two-dimensional silicide 5 × 3 structure on Cu(001) as seen by scanning tunneling microscopy and helium-atom scattering. Phys Rev B 50(20): 15304–15315 (1994)

Article  Google Scholar 

Rebhan M, Meier R, Plagge A, Rohwerder M, Stratmann M. High temperature chemical vapor deposition of silicon on Fe(100). Appl Surf Sci 178(1–4): 194–200 (2001)

Article  Google Scholar 

He L P, Cai Z B, Peng J F, Deng W L, Li Y, Yang L Y, Zhu M H. Effects of oxidation layer and roughness on the fretting wear behavior of copper under electrical contact. Mater Res Express 6(12): 1265e3 (2019)

Article  Google Scholar 

Zheng Y T, Xuan F Z, Wang Z D. Surface roughness of the strained polycrystalline copper during the early stage oxidation. Comput Mater Sci 114: 183–188 (2016)

Article  Google Scholar 

Sedlaček M, Podgornik B, Vižintin J. Influence of surface preparation on roughness parameters, friction and wear. Wear 266(3–4): 482–487 (2009)

Article 

留言 (0)

沒有登入
gif