Method for the measurement of triboelectric charge transfer at solid–liquid interface

Zhao X J, Kuang S Y, Wang Z L, Zhu G. Highly adaptive solid—liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy. ACS Nano 12(5): 4280–4285 (2018)

Article  Google Scholar 

Zheng L, Lin Z H, Cheng G, Wu W Z, Wen X N, Lee S M, Wang Z L. Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy. Nano Energy 9: 291–300 (2014)

Article  Google Scholar 

Zhang L M, Han C B, Jiang T, Zhou T, Li X H, Zhang C, Wang Z L. Multilayer wavy-structured robust triboelectric nanogenerator for harvesting water wave energy. Nano Energy 22: 87–94 (2016)

Article  Google Scholar 

Liu Y P, Zheng Y B, Li T H, Wang D A, Zhou F. Water—solid triboelectrification with self-repairable surfaces for water-flow energy harvesting. Nano Energy 61: 454–161 (2019)

Article  Google Scholar 

Li Y W, Han P D, Li D C, Chen S Y, Wang Y M. Typical dampers and energy harvesters based on characteristics of ferrofluids. Friction 11(2): 165–186 (2023)

Article  Google Scholar 

Yang P F, Wei G F, Liu A, Huo F W, Zhang Z N. A review of sampling, energy supply and intelligent monitoring for long-term sweat sensors. Npj Flex Electron 6: 33 (2022)

Article  Google Scholar 

Zhang X L, Zheng Y B, Wang D A, Zhou F. Solid—liquid triboelectrification in smart U-tube for multifunctional sensors. Nano Energy 40: 95–106 (2017)

Article  Google Scholar 

Zhang X L, Zheng Y B, Wang D A, Rahman Z U, Zhou F. Liquid—solid contact triboelectrification and its use in self-powered nanosensor for detecting organics in water. Nano Energy 30: 321–329 (2016)

Article  Google Scholar 

Zhang W Q, Wang P F, Sun K, Wang C, Diao D F. Intelligently detecting and identifying liquids leakage combining triboelectric nanogenerator based self-powered sensor with machine learning. Nano Energy 56: 277–285 (2019)

Article  Google Scholar 

Zhao X J, Zhu G, Fan Y J, Li H Y, Wang Z L. Triboelectric charging at the nanostructured solid/liquid interface for area-scalable wave energy conversion and its use in corrosion protection. ACS Nano 9(7): 7671–7677 (2015)

Article  Google Scholar 

Cheng H W, Dienemann J N, Stock P, Merola C, Chen Y J, Valtiner M. The effect of water and confinement on self-assembly of imidazolium based ionic liquids at mica interfaces. Sci Rep 6: 30058 (2016)

Article  Google Scholar 

Liu X, Zhang J J, Zhang L Q, Feng Y G, Feng M, Luo N, Wang D A. Influence of interface liquid lubrication on triboelectrification of point contact friction pair. Tribol Int 165: 107323 (2022)

Article  Google Scholar 

He W C, Liu W L, Fu S K, Wu H Y, Shan C C, Wang Z, Xi Y, Wang X, Guo H Y, Liu H, et al. Ultrahigh performance triboelectric nanogenerator enabled by charge transmission in interfacial lubrication and potential decentralization design. Research 2022: 9812865 (2022)

Article  Google Scholar 

Nie J H, Ren Z W, Xu L, Lin S Q, Zhan F, Chen X Y, Wang Z L. Probing contact-electrification-induced electron and ion transfers at a liquid—solid interface. Adv Mater 32(2): 1905696 (2020) [15] Lin S Q, Zheng M L, Luo J J, Wang Z L. Effects of surface functional groups on electron transfer at liquid—solid interfacial contact electrification. ACS Nano 14(8): 10733–10741 (2020)

Google Scholar 

Lin S Q, Xu L, Chi Wang A, Wang Z L. Quantifying electron-transfer in liquid—solid contact electrification and the formation of electric double-layer. Nat Commun 11(1): 399 (2020)

Article  Google Scholar 

Park J. Demonstration and mechanism analysis of energy conversion device (ionovoltaic device) driven by water (electrolyte) movement. Ph.D. Thesis. Seoul (Korea): Seoul National University, 2018.

Google Scholar 

Zhang J Y, Rogers F J M, Darwish N, Gonçales V R, Vogel Y B, Wang F, Gooding J J, Peiris M C R, Jia G H, Veder J P, et al. Electrochemistry on tribocharged polymers is governed by the stability of surface charges rather than charging magnitude. J Am Chem Soc 141(14): 5863–5870 (2019)

Article  Google Scholar 

Chen Y, Li X J, Xu C G, Wang D A, Huang J X, Guo Z G, Liu W M. Electron transfer dominated triboelectrification at the hydrophobic/slippery substrate-water interfaces. Frictionhttps://doi.org/10.1007/s40544-022-0646-1 (2022).

Zhang J Y, Lin S Q, Zheng M L, Wang Z L. Triboelectric nanogenerator as a probe for measuring the charge transfer between liquid and solid surfaces. ACS Nano 15(9): 14830–14837 (2021)

Article  Google Scholar 

Zhou L L, Liu D, Wang J, Wang Z L. Triboelectric nanogenerators: Fundamental physics and potential applications. Friction 8(3): 481–506 (2020)

Article  Google Scholar 

Tang Z, Lin S Q, Wang Z L. Quantifying contact-electrification induced charge transfer on a liquid droplet after contacting with a liquid or solid. Adv Mater 33(42): 2102886 (2021)

Article  Google Scholar 

Lin S Q, Zheng M L, Wang Z L. Detecting the liquid—solid contact electrification charges in a liquid environment. J Phys Chem C 125(25): 14098–14104 (2021)

Article  Google Scholar 

Yoo D, Park S C, Lee S, Sim J Y, Song I, Choi D, Lim H, Kim D S. Biomimetic anti-reflective triboelectric nanogenerator for concurrent harvesting of solar and raindrop energies. Nano Energy 57: 424–431 (2019)

Article  Google Scholar 

Mariello M, Guido F, Mastronardi V M, Todaro M T, Desmaële D, de Vittorio M. Nanogenerators for harvesting mechanical energy conveyed by liquids. Nano Energy 57: 141–156 (2019)

Article  Google Scholar 

Lai Y C, Hsiao Y C, Wu H M, Wang Z L. Waterproof fabric-based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self-powered sensors. Adv Sci 6(5): 1801883 (2019)

Article  Google Scholar 

Liu Y Q, Sun N, Liu J W, Wen Z, Sun X H, Lee S T, Sun B Q. Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops. ACS Nano 12(3): 2893–2899 (2018)

Article  Google Scholar 

Nahian S A, Cheedarala R K, Ahn K K. A study of sustainable green current generated by the fluid-based triboelectric nanogenerator (FluTENG) with a comparison of contact and sliding mode. Nano Energy 38: 447–456 (2017)

Article  Google Scholar 

Zou H Y, Zhang Y, Guo L T, Wang P H, He X, Dai G Z, Zheng H W, Chen C Y, Wang A C, Xu C, et al. Quantifying the triboelectric series. Nat Commun 10(1): 1427 (2019)

Article  Google Scholar 

Stanford M G, Li J T, Chyan Y, Wang Z, Wang W, Tour J M. Laser-induced graphene triboelectric nanogenerators. ACS Nano 13(6): 7166–7174 (2019)

Article  Google Scholar 

Ye Y, Cui A Y, Zhu L Q, Hu Z G, Jiang K, Shang L Y, Li Y W, Xu G S, Chu J H. Electric-double-layer oriented field-screening effect on high-resolution electromechanical imaging in conductive solutions. Phys Rev Appl 12(3): 034006 (2019)

Article  Google Scholar 

Honbo K, Ogata S, Kitagawa T, Okamoto T, Kobayashi N, Sugimoto I, Shima S, Fukunaga A, Takatoh C, Fukuma T. Visualizing nanoscale distribution of corrosion cells by open-loop electric potential microscopy. ACS Nano 10(2): 2575–2583 (2016)

Article  Google Scholar 

Collins L, Jesse S, Kilpatrick J I, Tselev A, Varenyk O, Okatan M B, Weber S A L, Kumar A, Balke N, Kalinin S V, et al. Probing charge screening dynamics and electrochemical processes at the solid—liquid interface with electrochemical force microscopy. Nat Commun 5: 3871 (2014)

Article  Google Scholar 

Peltonen J, Murtomaa M, Salonen J. Measuring electrostatic charging of powders on-line during surface adhesion. J Electrostat 93: 53–57 (2018)

Article  Google Scholar 

Choi D, Lee H, Im D J, Kang I S, Lim G, Kim D S, Kang K H. Spontaneous electrical charging of droplets by conventional pipetting. Sci Rep 3: 2037 (2013)

Article  Google Scholar 

Cezan S D, Nalbant A A, Buyuktemiz M, Dede Y, Baytekin H T, Baytekin B. Control of triboelectric charges on common polymers by photoexcitation of organic dyes. Nat Commun 10(1): 276 (2019)

Article  Google Scholar 

Amin M S, Peterson T F Jr, Zahn M. Advanced Faraday cage measurements of charge and open-circuit voltage using water dielectrics. J Electrostat 64(7–9): 424–430 (2006)

Article  Google Scholar 

Wang T C, Yang Y L, Shao T M, Cheng B X, Zhao Q, Shang H F. Simulation of magnetic-field-induced ion motion in vacuum arc deposition for inner surfaces of tubular workpiece. Coatings 10(11): 1053 (2020)

Article  Google Scholar 

Information on http://cn.comsol.com/support/knowledgebase/1272, 2022. (in Chinese)

Tilmatine O, Zeghloul T, Medles K, Dascalescu L, Fatu A. Effect of ambient air relative humidity on the triboelectric properties of polypropylene and polyvinyl chloride slabs. J Electrostat 115: 103651 (2022)

Article  Google Scholar 

Burgo T A L, Galembeck F, Pollack G H. Where is water in the triboelectric series? J Electrostat 80: 30–33 (2016)

Article  Google Scholar 

Ying Z H, Long Y, Yang F, Dong Y T, Li J, Zhang Z Y, Wang X D. Self-powered liquid chemical sensors based on solid—liquid contact electrification. Analyst 146(5): 1656–1662 (2021)

Article  Google Scholar 

留言 (0)

沒有登入
gif