LAMP2A regulates the balance of mesenchymal stem cell adipo-osteogenesis via the Wnt/β-catenin/GSK3β signaling pathway

Rui P, Kang K (2017) National Hospital Ambulatory Medical Care Survey: 2017 emergency department summary tables. Natl Ambul Med Care Surv 37

Zura R, Xiong Z, Einhorn T et al (2016) Epidemiology of Fracture Nonunion in 18 Human Bones. JAMA Surg 151:e162775. https://doi.org/10.1001/jamasurg.2016.2775

Hak DJ, Fitzpatrick D, Bishop JA et al (2014) Delayed union and nonunions: Epidemiology, clinical issues, and financial aspects. Injury 45:S3–S7. https://doi.org/10.1016/j.injury.2014.04.002

Article  PubMed  Google Scholar 

Pajarinen J, Lin T, Gibon E et al (2019) Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials 196:80–89. https://doi.org/10.1016/j.biomaterials.2017.12.025

Article  CAS  PubMed  Google Scholar 

Polimeni G, Xiropaidis AV, Wikesjö UME (2006) Biology and principles of periodontal wound healing/regeneration. Periodontol 2000 41:30–47. https://doi.org/10.1111/j.1600-0757.2006.00157.x

Article  PubMed  Google Scholar 

Wu AC, Raggatt LJ, Alexander KA, Pettit AR (2013) Unraveling macrophage contributions to bone repair. Bonekey Rep 2:373. https://doi.org/10.1038/bonekey.2013.107

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Y, Liu Y, Chen E, Pan Z (2020) The role of mitochondrial dysfunction in mesenchymal stem cell senescence. Cell Tissue Res 382:457–462. https://doi.org/10.1007/s00441-020-03272-z

Article  PubMed  Google Scholar 

Pei L, Tontonoz P (2004) Fat’s loss is bone’s gain. J Clin Invest 113:805–6. https://doi.org/10.1172/JCI21311

Article  CAS  PubMed  PubMed Central  Google Scholar 

Picke A-K, Campbell GM, Blüher M et al (2018) Thy-1 (CD90) promotes bone formation and protects against obesity. Sci Transl Med 10. https://doi.org/10.1126/scitranslmed.aao6806

Horwitz EM, Prockop DJ, Fitzpatrick LA et al (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309–13. https://doi.org/10.1038/6529

Article  CAS  PubMed  Google Scholar 

Kaushik S, Massey AC, Cuervo AM (2006) Lysosome membrane lipid microdomains: novel regulators of chaperone-mediated autophagy. EMBO J 25:3921–33. https://doi.org/10.1038/sj.emboj.7601283

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaushik S, Cuervo AM (2012) Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol 22:407–17. https://doi.org/10.1016/j.tcb.2012.05.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cuervo AM, Wong E (2014) Chaperone-mediated autophagy: Roles in disease and aging. Cell Res 24:92–104. https://doi.org/10.1038/cr.2013.153

Article  CAS  PubMed  Google Scholar 

Cuervo AM, Dice JF (2000) Unique properties of lamp2a compared to other lamp2 isoforms. J Cell Sci 113(Pt 24):4441–50. https://doi.org/10.1242/jcs.113.24.4441

Article  CAS  PubMed  Google Scholar 

Cuervo AM, Dice JF (2000) Regulation of lamp2a levels in the lysosomal membrane. Traffic 1:570–83. https://doi.org/10.1034/j.1600-0854.2000.010707.x

Article  CAS  PubMed  Google Scholar 

Notomi S, Ishihara K, Efstathiou NE et al (2019) Genetic LAMP2 deficiency accelerates the age-associated formation of basal laminar deposits in the retina. Proc Natl Acad Sci USA 116:23724–23734. https://doi.org/10.1073/pnas.1906643116

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murphy KE, Gysbers AM, Abbott SK et al (2015) Lysosomal-associated membrane protein 2 isoforms are differentially affected in early Parkinson’s disease. Mov Disord 30:1639–1647. https://doi.org/10.1002/mds.26141

Article  CAS  PubMed  Google Scholar 

Endo Y, Furuta A, Nishino I (2015) Danon disease: a phenotypic expression of LAMP-2 deficiency. Acta Neuropathol 129:391–398. https://doi.org/10.1007/s00401-015-1385-4

Article  CAS  PubMed  Google Scholar 

Arad M, Maron BJ, Gorham JM et al (2005) Glycogen storage diseases presenting as hypertrophic cardiomyopathy. N Engl J Med 352:362–372. https://doi.org/10.1056/NEJMoa033349

Article  CAS  PubMed  Google Scholar 

Zhao K, Hao H, Liu J et al (2015) Bone marrow-derived mesenchymal stem cells ameliorate chronic high glucose-induced β-cell injury through modulation of autophagy. Cell Death Dis 6:e1885. https://doi.org/10.1038/cddis.2015.230

Jansen IDC, Tigchelaar-Gutter W, Hogervorst JMA et al (2020) LAMP-2 Is Involved in Surface Expression of RANKL of Osteoblasts In Vitro. Int J Mol Sci 21:1–17. https://doi.org/10.3390/ijms21176110

Article  CAS  Google Scholar 

Chaudhary SC, Kuzynski M, Bottini M et al (2016) Phosphate induces formation of matrix vesicles during odontoblast-initiated mineralization in vitro. Matrix Biol 52–54:284–300. https://doi.org/10.1016/j.matbio.2016.02.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akel N, MacLeod RS, Berryhill SB et al (2022) Loss of chaperone-mediated autophagy is associated with low vertebral cancellous bone mass. Sci Rep 12:3134. https://doi.org/10.1038/s41598-022-07157-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ritchie ME, Phipson B, Wu D et al (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47. https://doi.org/10.1093/nar/gkv007

Hang K, Ye C, Xu J et al (2019) Apelin enhances the osteogenic differentiation of human bone marrow mesenchymal stem cells partly through Wnt/β-catenin signaling pathway. Stem Cell Res Ther 10:1–10. https://doi.org/10.1186/s13287-019-1286-x

Article  CAS  Google Scholar 

Pajares M, Rojo AI, Arias E et al (2018) Transcription factor NFE2L2/NRF2 modulates chaperone-mediated autophagy through the regulation of LAMP2A. Autophagy 14:1310–1322. https://doi.org/10.1080/15548627.2018.1474992

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harry LE, Sandison A, Paleolog EM et al (2008) Comparison of the healing of open tibial fractures covered with either muscle or fasciocutaneous tissue in a murine model. J Orthop Res 26:1238–1244. https://doi.org/10.1002/jor.20649

Article  PubMed  Google Scholar 

Glass GE, Chan JK, Freidin A et al (2011) TNF-alpha promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells. Proc Natl Acad Sci USA 108:1585–90. https://doi.org/10.1073/pnas.1018501108

Article  PubMed  PubMed Central  Google Scholar 

Bouxsein ML, Boyd SK, Christiansen BA et al (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25:1468–1486. https://doi.org/10.1002/jbmr.141

Article  PubMed  Google Scholar 

Gremse F, Stärk M, Ehling J et al (2016) Imalytics Preclinical: Interactive Analysis of Biomedical Volume Data. Theranostics 6:328–41. https://doi.org/10.7150/thno.13624

Article  PubMed  PubMed Central  Google Scholar 

Dong S, Wang Q, Kao Y-R et al (2021) Chaperone-mediated autophagy sustains haematopoietic stem-cell function. Nature 591:117–123. https://doi.org/10.1038/s41586-020-03129-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu Y, Zhang Y, García-Cañaveras JC et al (2020) Chaperone-mediated autophagy regulates the pluripotency of embryonic stem cells. Science 369:397–403. https://doi.org/10.1126/science.abb4467

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaudhry N, Sica M, Surabhi S et al (2022) Lamp1 mediates lipid transport, but is dispensable for autophagy in Drosophila. Autophagy 00:1–16. https://doi.org/10.1080/15548627.2022.2038999

Article  CAS  Google Scholar 

Xu J, Wang Y, Hsu C-Y et al (2020) Lysosomal protein surface expression discriminates fat- from bone-forming human mesenchymal precursor cells. Elife 9:. https://doi.org/10.7554/eLife.58990

Hatem CL, Gough NR, Fambrough DM (1995) Multiple mRNAs encode the avian lysosomal membrane protein LAMP-2, resulting in alternative transmembrane and cytoplasmic domains. J Cell Sci 108(Pt 5):2093–2100. https://doi.org/10.1242/jcs.108.5.2093

Article  CAS  PubMed  Google Scholar 

Gough NR, Hatem CL, Fambrough DM (1995) The family of LAMP-2 proteins arises by alternative splicing from a single gene: characterization of the avian LAMP-2 gene and identification of mammalian homologs of LAMP-2b and LAMP-2c. DNA Cell Biol 14:863–867. https://doi.org/10.1089/dna.1995.14.863

Article  CAS  PubMed  Google Scholar 

Konecki DS, Foetisch K, Zimmer KP et al (1995) An alternatively spliced form of the human lysosome-associated membrane protein-2 gene is expressed in a tissue-specific manner. Biochem Biophys Res Commun 215:757–767. https://doi.org/10.1006/bbrc.1995.2528

Article  CAS  PubMed  Google Scholar 

Eskelinen E-L, Cuervo AM, Taylor MRG et al (2005) Unifying nomenclature for the isoforms of the lysosomal membrane protein LAMP-2. Traffic 6:1058–1061. https://doi.org/10.1111/j.1600-0854.2005.00337.x

Article  CAS  PubMed  Google Scholar 

Chi C, Leonard A, Knight WE et al (2019) LAMP-2B regulates human cardiomyocyte function by mediating autophagosome–lysosome fusion. Proc Natl Acad Sci USA 116:556–565. https://doi.org/10.1073/pnas.1808618116

Article  CAS  PubMed  Google Scholar 

Manso AM, Hashem SI, Nelson BC et al (2020) Systemic AAV9.LAMP2B injection reverses metabolic and physiologic multiorgan dysfunction in a murine model of Danon disease. Sci Transl Med 12:1–13. https://doi.org/10.1126/scitranslmed.aax1744

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif