Bicuspid aortic valve aortopathy is characterized by embryonic epithelial to mesenchymal transition and endothelial instability

Sillesen A-S, Vøgg O, Pihl C, Raja AA, Sundberg K, Vedel C, Zingenberg H, Jørgensen FS, Vejlstrup N, Iversen K et al (2021) Prevalence of bicuspid aortic valve and associated aortopathy in Newborns in Copenhagen. Denmark JAMA 325:561–567

Article  CAS  PubMed  Google Scholar 

Masri A, Kalahasti V, Alkharabsheh S, Svensson LG, Sabik JF, Roselli EE, Hammer D, Johnston DR, Collier P, Rodriguez LL et al (2016) Characteristics and long-term outcomes of contemporary patients with bicuspid aortic valves. J Thorac Cardiovasc Surg 151:1650-1659.e1

Article  PubMed  Google Scholar 

Guo MH, Appoo JJ, Saczkowski R, Smith HN, Ouzounian M, Gregory AJ, Herget EJ, Boodhwani M (2018) Association of mortality and acute aortic events with ascending aortic aneurysm: a systematic review and meta-analysis. JAMA Netw Open 1:e181281

Article  PubMed  PubMed Central  Google Scholar 

Epstein JA, Franklin H, Epstein Lecture (2010) Cardiac development and implications for heart disease. N Engl J Med 363:1638–47

Peterson JC, Chughtai M, Wisse LJ, Gittenberger-de Groot AC, Feng Q, Goumans MTH, VanMunsteren JC, Jongbloed MRM, DeRuiter MC (2018) Bicuspid aortic valve formation: Nos3 mutation leads to abnormal lineage patterning of neural crest cells and the second heart field. Dis Model Mech 11

Maleki S, Poujade F-A, Bergman O, Gådin JR, Simon N, Lång K, Franco-Cereceda A, Body SC, Björck HM, Eriksson P (2019) Endothelial/epithelial mesenchymal transition in ascending aortas of patients with bicuspid aortic valve. Front Cardiovasc Med 6:182

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gehlen J, Stundl A, Debiec R, Fontana F, Krane M, Sharipova D, Nelson CP, Al-Kassou B, Giel AS, Sinning JM et al (2022) Elucidation of the genetic causes of bicuspid aortic valve disease. Cardiovasc Res cvac099

Jain R, Engleka KA, Rentschler SL, Manderfield LJ, Li L, Yuan L, Epstein JA (2011) Cardiac neural crest orchestrates remodeling and functional maturation of mouse semilunar valves. J Clin Invest 121:422–430

Article  CAS  PubMed  Google Scholar 

de la Pompa JL, Epstein JA (2012) Coordinating tissue interactions: notch signaling in cardiac development and disease. Dev Cell 22:244–254

Article  PubMed  PubMed Central  Google Scholar 

Gould RA, Aziz H, Woods CE, Seman-Senderos MA, Sparks E, Preuss C, Wunnemann F, Bedja D, Moats CR, McClymont SA et al (2019) ROBO4 variants predispose individuals to bicuspid aortic valve and thoracic aortic aneurysm. Nat Genet 51:42–50

Bjorck HM, Du L, Pulignani S, Paloschi V, Lundstromer K, Kostina AS, Osterholm C, Malashicheva A, Kostareva A, Evangelista A et al (2018) Mechanistic interrogation of bicuspid aortic valve associated aortopathy Leducq C. Altered DNA methylation indicates an oscillatory flow mediated epithelial-to-mesenchymal transition signature in ascending aorta of patients with bicuspid aortic valve. Sci Rep 8:2777

Maleki S, Cottrill KA, Poujade FA, Bhattachariya A, Bergman O, Gadin JR, Simon N, Lundstromer K, Franco-Cereceda A, Bjorck HM et al (2019) The mir-200 family regulates key pathogenic events in ascending aortas of individuals with bicuspid aortic valves. J Intern Med 285:102–114

Article  CAS  PubMed  Google Scholar 

Maleki S, Kjellqvist S, Paloschi V, Magne J, Branca RM, Du L, Hultenby K, Petrini J, Fuxe J, Mibava LC et al (2016) Mesenchymal state of intimal cells may explain higher propensity to ascending aortic aneurysm in bicuspid aortic valves. Sci Rep 6:35712

Jauhiainen S, Kiema M, Hedman M, Laakkonen JP (2022) Large Vessel cell heterogeneity and plasticity: focus in aortic aneurysms. Arterioscler Thromb Vasc Biol 42:811–818

Article  CAS  PubMed  Google Scholar 

Zeisberg M, Neilson EG (2009) Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 119:1429–1437

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wagsater D, Paloschi V, Hanemaaijer R, Hultenby K, Bank RA, Franco-Cereceda A, Lindeman JH, Eriksson P (2013) Impaired collagen biosynthesis and cross-linking in aorta of patients with bicuspid aortic valve. J Am Heart Assoc 2:e000034

Article  PubMed  PubMed Central  Google Scholar 

Karalko M, Stejskal V, Dergel M, Gofus J, Timbilla S, Zaloudkova L, Zacek P, Pojar M, Vojacek J (2021) Histopathological changes in dilated ascending aorta associated with aortic valve cuspidity. Eur J Cardiothorac Surg 59:1103–1108

Article  PubMed  Google Scholar 

Folkersen L, Wagsater D, Paloschi V, Jackson V, Petrini J, Kurtovic S, Maleki S, Eriksson MJ, Caidahl K, Hamsten A et al (2011) Unraveling divergent gene expression profiles in bicuspid and tricuspid aortic valve patients with thoracic aortic dilatation: the ASAP study. Mol Med 17:1365–1373

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jackson V, Petrini J, Caidahl K, Eriksson MJ, Liska J, Eriksson P, Franco-Cereceda A (2011) Bicuspid aortic valve leaflet morphology in relation to aortic root morphology: a study of 300 patients undergoing open-heart surgery. Eur J Cardiothorac Surg 40:e118–e124

PubMed  Google Scholar 

Granath C, Freiholtz D, Bredin F, Olsson C, Franco-Cereceda A, Björck HM (2022) Acetylsalicylic acid is associated with a lower prevalence of ascending aortic aneurysm and a decreased aortic expression of cyclooxygenase 2. J Am Heart Assoc e024346

Bruijn LE, van den Akker BEWM, van Rhijn CM, Hamming JF, Lindeman JHN (2020) Extreme diversity of the human vascular mesenchymal cell landscape. J Am Heart Assoc 9:e017094

Article  CAS  PubMed  PubMed Central  Google Scholar 

Malashicheva A, Kostina D, Kostina A, Irtyuga O, Voronkina I, Smagina L, Ignatieva E, Gavriliuk N, Uspensky V, Moiseeva O et al (2016) Phenotypic and functional changes of endothelial and smooth muscle cells in thoracic aortic aneurysms. Int J Vasc Med 2016:3107879

PubMed  PubMed Central  Google Scholar 

Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L et al (2021) clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb) 2:100141

Moushi A, Pillar N, Keravnou A, Soteriou M, Shomron N, Cariolou MA, Bashiardes E (2020) MicroRNAs in ascending thoracic aortic aneurysms. Biosci Rep 40:BSR20200218

Lertkiatmongkol P, Liao D, Mei H, Hu Y, Newman PJ (2016) Endothelial functions of PECAM-1 (CD31). Curr Opin Hematol 23:253–259

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rentschler S, Jain R, Epstein JA (2010) Tissue-tissue interactions during morphogenesis of the outflow tract. Pediatr Cardiol 31:408–413

Article  PubMed  Google Scholar 

High FA, Jain R, Stoller JZ, Antonucci NB, Lu MM, Loomes KM, Kaestner KH, Pear WS, Epstein JA (2009) Murine Jagged1/notch signaling in the second heart field orchestrates Fgf8 expression and tissue-tissue interactions during outflow tract development. J Clin Invest 119:1986–1996

CAS  PubMed  PubMed Central  Google Scholar 

Lewandowski SL, Janardhan HP, Trivedi CM (2015) Histone deacetylase 3 Coordinates deacetylase-independent epigenetic silencing of transforming growth factor-beta1 (TGF-beta1) to orchestrate second heart field development. J Biol Chem 290:27067–27089

Article  CAS  PubMed  PubMed Central  Google Scholar 

Phillips HM, Mahendran P, Singh E, Anderson RH, Chaudhry B, Henderson DJ (2013) Neural crest cells are required for correct positioning of the developing outflow cushions and pattern the arterial valve leaflets. Cardiovasc Res 99:452–460

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moonen JR, Lee ES, Schmidt M, Maleszewska M, Koerts JA, Brouwer LA, van Kooten TG, van Luyn MJ, Zeebregts CJ, Krenning G et al (2015) Endothelial-to-mesenchymal transition contributes to fibro-proliferative vascular disease and is modulated by fluid shear stress. Cardiovasc Res 108:377–386

Article  CAS  PubMed  Google Scholar 

Mahler GJ, Frendl CM, Cao Q, Butcher JT (2014) Effects of shear stress pattern and magnitude on mesenchymal transformation and invasion of aortic valve endothelial cells. Biotechnol Bioeng 111:2326–2337

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Russo J, Hannocks M-J, Luik A-L, Song J, Zhang X, Yousif L, Aspite G, Hallmann R, Sorokin L (2017) Vascular laminins in physiology and pathology. Matrix Biol 57–58:140–148

Article  PubMed  Google Scholar 

Yousif LF, Di Russo J, Sorokin L (2013) Laminin isoforms in endothelial and perivascular basement membranes. Cell Adh Migr 7:101–110

Article  PubMed  PubMed Central  Google Scholar 

Fujiwara H, Hayashi Y, Sanzen N, Kobayashi R, Weber CN, Emoto T, Futaki S, Niwa H, Murray P, Edgar D, Sekiguchi K (2007) Regulation of mesodermal differentiation of mouse embryonic stem cells by basement membranes. J Biol Chem 282:29701–29711

Article  CAS  PubMed  Google Scholar 

Richards M, Pal S, Sjöberg E, Martinsson P, Venkatraman L, Claesson-Welsh L (2021) Intra-vessel heterogeneity establishes enhanced sites of macromolecular leakage downstream of laminin α5. Cell Rep 35:109268

Article  CAS  PubMed  Google Scholar 

Khajavi M, Zhou Y, Schiffer AJ, Bazinet L, Birsner AE, Zon L, D’Amato RJ (2021) Identification of Basp1 as a novel angiogenesis-regulating gene by multi-model system studies. FASEB J 35:e21404

Article  CAS  PubMed  Google Scholar 

Sakabe M, Ikeda K, Nakatani K, Kawada N, Imanaka-Yoshida K, Yoshida T, Yamagishi T, Nakajima Y (2006) Rho kinases regulate endothelial invasion and migration during valvuloseptal endocardial cushion tissue formation. Dev Dyn 235:94–104

Article  CAS  PubMed  Google Scholar 

Grewal N, Gittenberger-de Groot AC, von der Thusen J, Wisse LJ, Bartelings MM, DeRuiter MC, Poelmann RE (2020) The development of the ascending aortic wall in tricuspid and bicuspid aortic valve: a process from maturation to degeneration. J Clin Med 9(4):908. Available from: https://pubmed.ncbi.nlm.nih.gov/32225051/

留言 (0)

沒有登入
gif