Bacterial extracellular vesicles repress the vascular protective factor RNase1 in human lung endothelial cells

Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet. 2020;395:200–11. https://doi.org/10.1016/S0140-6736(19)32989-7.

Article  PubMed  PubMed Central  Google Scholar 

Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017;39:517–28. https://doi.org/10.1007/s00281-017-0639-8.

Article  CAS  PubMed  Google Scholar 

Feldman C, Anderson R. Pneumonia as a systemic illness. Curr Opin Pulm Med. 2018;24:237–43. https://doi.org/10.1097/MCP.0000000000000466.

Article  PubMed  Google Scholar 

Minasyan H. Sepsis: mechanisms of bacterial injury to the patient. Scand J Trauma Resusc Emerg Med. 2019;27:19. https://doi.org/10.1186/s13049-019-0596-4.

Article  PubMed  PubMed Central  Google Scholar 

Iba T, Levi M, Levy JH. Sepsis-induced coagulopathy and disseminated intravascular coagulation. Semin Thromb Hemost. 2020;46:89–95. https://doi.org/10.1055/s-0039-1694995.

Article  PubMed  Google Scholar 

Luyt CE, Hekimian G, Koulenti D, Chastre J. Microbial cause of ICU-acquired pneumonia: hospital-acquired pneumonia versus ventilator-associated pneumonia. Curr Opin Crit Care. 2018;24:332–8. https://doi.org/10.1097/MCC.0000000000000526.

Article  PubMed  Google Scholar 

Prina E, Ranzani OT, Torres A. Community-acquired pneumonia. Lancet. 2015;386:1097–108. https://doi.org/10.1016/S0140-6736(15)60733-4.

Article  PubMed  PubMed Central  Google Scholar 

Cecconi M, Evans L, Levy M, Rhodes A. Sepsis and septic shock. Lancet. 2018;392:75–87. https://doi.org/10.1016/S0140-6736(18)30696-2.

Article  PubMed  Google Scholar 

Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003;348:138–50. https://doi.org/10.1056/NEJMra021333.

Article  CAS  PubMed  Google Scholar 

Terrasini N, Lionetti V. Exosomes in critical illness. Crit Care Med. 2017;45:1054–60. https://doi.org/10.1097/CCM.0000000000002328.

Article  CAS  PubMed  Google Scholar 

Jung AL, Schmeck B, Wiegand M, Bedenbender K, Benedikter BJ. The clinical role of host and bacterial-derived extracellular vesicles in pneumonia. Adv Drug Deliv Rev. 2021. https://doi.org/10.1016/j.addr.2021.05.021.

Article  PubMed  Google Scholar 

Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019. https://doi.org/10.3390/cells8070727.

Article  PubMed  PubMed Central  Google Scholar 

Maas SLN, Breakefield XO, Weaver AM. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 2017;27:172–88. https://doi.org/10.1016/j.tcb.2016.11.003.

Article  CAS  PubMed  Google Scholar 

Bittel M, Reichert P, Sarfati I, Dressel A, Leikam S, Uderhardt S, et al. Visualizing transfer of microbial biomolecules by outer membrane vesicles in microbe-host-communication in vivo. J Extracell Vesicles. 2021;10:e12159. https://doi.org/10.1002/jev2.12159.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Joffre J, Hellman J, Ince C, Ait-Oufella H. Endothelial responses in sepsis. Am J Respir Crit Care Med. 2020;202:361–70. https://doi.org/10.1164/rccm.201910-1911TR.

Article  CAS  PubMed  Google Scholar 

Lubkin A, Torres VJ. Bacteria and endothelial cells: a toxic relationship. Curr Opin Microbiol. 2017;35:58–63. https://doi.org/10.1016/j.mib.2016.11.008.

Article  CAS  PubMed  Google Scholar 

Shah B, Sullivan CJ, Lonergan NE, Stanley S, Soult MC, Britt LD. Circulating bacterial membrane vesicles cause sepsis in rats. Shock. 2012;37:621–8. https://doi.org/10.1097/SHK.0b013e318250de5d.

Article  CAS  PubMed  Google Scholar 

Svennerholm K, Park K-S, Wikström J, Lässer C, Crescitelli R, Shelke GV, et al. Escherichia coli outer membrane vesicles can contribute to sepsis induced cardiac dysfunction. Sci Rep-Uk. 2017;7:17434. https://doi.org/10.1038/s41598-017-16363-9.

Article  CAS  Google Scholar 

Yu YJ, Wang XH, Fan GC. Versatile effects of bacterium-released membrane vesicles on mammalian cells and infectious/inflammatory diseases. Acta Pharmacol Sin. 2018;39:514–33. https://doi.org/10.1038/aps.2017.82.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Meng H, Ma RS, He ZX, Wu XM, Cao MH, et al. Circulating microparticles, blood cells, and endothelium induce procoagulant activity in sepsis through phosphatidylserine exposure. Shock. 2016;45:299–307. https://doi.org/10.1097/Shk.0000000000000509.

Article  CAS  PubMed  Google Scholar 

Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles. Nat Rev Microbiol. 2019;17:13–24. https://doi.org/10.1038/s41579-018-0112-2.

Article  CAS  PubMed  Google Scholar 

Soult MC, Lonergan NE, Shah B, Kim WK, Britt LD, Sullivan CJ. Outer membrane vesicles from pathogenic bacteria initiate an inflammatory response in human endothelial cells. J Surg Res. 2013;184:458–66. https://doi.org/10.1016/j.jss.2013.05.035.

Article  CAS  PubMed  Google Scholar 

Gay NJ, Symmons MF, Gangloff M, Bryant CE. Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol. 2014;14:546–58. https://doi.org/10.1038/nri3713.

Article  CAS  PubMed  Google Scholar 

Majoros A, Platanitis E, Kernbauer-Hölzl E, Rosebrock F, Müller M, Decker T. Canonical and non-canonical aspects of JAK-STAT signaling: lessons from interferons for cytokine responses. Front Immunol. 2017;8:29. https://doi.org/10.3389/fimmu.2017.00029.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rathinam VAK, Zhao Y, Shao F. Innate immunity to intracellular LPS. Nat Immunol. 2019;20:527–33. https://doi.org/10.1038/s41590-019-0368-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bochenek ML, Schafer K. Role of endothelial cells in acute and chronic thrombosis. Hamostaseologie. 2019;39:128–39. https://doi.org/10.1055/s-0038-1675614.

Article  PubMed  Google Scholar 

Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, Nishigaki I. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9:1057–69. https://doi.org/10.7150/ijbs.7502.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 2007;7:803–15. https://doi.org/10.1038/nri2171.

Article  CAS  PubMed  Google Scholar 

Wang M, Hao HF, Leeper NJ, Zhu LY, Comm EC. Thrombotic regulation from the endothelial cell perspectives. Arterioscl Throm Vas. 2018;38:E90–5. https://doi.org/10.1161/Atvbaha.118.310367.

Article  CAS  Google Scholar 

Bedenbender K, Schmeck BT. Endothelial ribonuclease 1 in cardiovascular and systemic inflammation. Front Cell Dev Biol. 2020;8:576491. https://doi.org/10.3389/fcell.2020.576491.

Article  PubMed  PubMed Central  Google Scholar 

Fischer S, Nishio M, Dadkhahi S, Gansler J, Saffarzadeh M, Shibamiyama A, et al. Expression and localisation of vascular ribonucleases in endothelial cells. Thromb Haemost. 2011;105:345–55. https://doi.org/10.1160/TH10-06-0345.

Article  CAS  PubMed  Google Scholar 

Futami J, Tsushima Y, Murato Y, Tada H, Sasaki J, Seno M, Yamada H. Tissue-specific expression of pancreatic-type RNases and RNase inhibitor in humans. DNA Cell Biol. 1997;16:413–9. https://doi.org/10.1089/dna.1997.16.413.

Article  CAS  PubMed  Google Scholar 

Landre JB, Hewett PW, Olivot JM, Friedl P, Ko Y, Sachinidis A, Moenner M. Human endothelial cells selectively express large amounts of pancreatic-type ribonuclease (RNase 1). J Cell Biochem. 2002;86:540–52. https://doi.org/10.1002/jcb.10234.

Article  CAS  PubMed  Google Scholar 

Gansler J, Preissner KT, Fischer S. Influence of proinflammatory stimuli on the expression of vascular ribonuclease 1 in endothelial cells. FASEB J. 2014;28:752–60. https://doi.org/10.1096/fj.13-238600.

Article  CAS  PubMed  Google Scholar 

Bedenbender K, Beinborn I, Vollmeister E, Schmeck B. p38 and Casein Kinase 2 Mediate Ribonuclease 1 Repression in Inflamed Human Endothelial Cells via Promoter Remodeling Through Nucleosome Remodeling and Deacetylase Complex. Front Cell Dev Biol. 2020;8:604. https://doi.org/10.3389/fcell.2020.563604.

Article  Google Scholar 

Bedenbender K, Scheller N, Fischer S, Leiting S, Preissner KT, Schmeck BT, Vollmeister E. Inflammation-mediated deacetylation of the ribonuclease 1 promoter via histone deacetylase 2 in endothelial cells. FASEB J. 2019;33:9017–29. https://doi.org/10.1096/fj.201900451R.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif