Bacillus cereus extracellular vesicles act as shuttles for biologically active multicomponent enterotoxins

Ehling-Schulz M, Lereclus D, Koehler TM. The Bacillus cereus Group: Bacillus Species with Pathogenic Potential. Microbiol Spectr. 2019;7(3):1-35.

Dietrich R, Jessberger N, Ehling-Schulz M, Märtlbauer E, Granum PE. The food poisoning toxins of Bacillus cereus. Toxins (Basel). 2021;13(2):98.

Article  CAS  PubMed  Google Scholar 

Bottone EJ. Bacillus cereus, a volatile human pathogen. Clin Microbiol Rev. 2010;23(2):382–98.

Article  PubMed  PubMed Central  Google Scholar 

Glasset B, Herbin S, Granier SA, Cavalié L, Lafeuille E, Guérin C, et al. Bacillus cereus, a serious cause of nosocomial infections: Epidemiologic and genetic survey. PLoS ONE. 2018;13(5):e0194346.

Article  PubMed  PubMed Central  Google Scholar 

Tschiedel E, Rath PM, Steinmann J, Becker H, Dietrich R, Paul A, et al. Lifesaving liver transplantation for multi-organ failure caused by Bacillus cereus food poisoning. Pediatr Transplant. 2015;19(1):E11–4.

Article  PubMed  Google Scholar 

Rouzeau-Szynalski K, Stollewerk K, Messelhäusser U, Ehling-Schulz M. Why be serious about emetic Bacillus cereus: cereulide production and industrial challenges. Food Microbiol. 2020;85:103279.

Article  CAS  PubMed  Google Scholar 

Lund T, Granum PE. Characterisation of a non-haemolytic enterotoxin complex from Bacillus cereus isolated after a foodborne outbreak. FEMS Microbiol Lett. 1996;141(2–3):151–6.

Article  CAS  PubMed  Google Scholar 

Ehling-Schulz M, Fricker M, Scherer S. Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol Nutr Food Res. 2004;48(7):479–87.

Article  PubMed  Google Scholar 

Schmid D, Rademacher C, Kanitz EE, Frenzel E, Simons E, Allerberger F, et al. Elucidation of enterotoxigenic Bacillus cereus outbreaks in Austria by complementary epidemiological and microbiological investigations, 2013. Int J Food Microbiol. 2016;232:80–6.

Article  PubMed  Google Scholar 

Beecher DJ, Schoeni JL, Wong AC. Enterotoxic activity of hemolysin BL from Bacillus cereus. Infect Immun. 1995;63(11):4423–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ehling-Schulz M, Svensson B, Guinebretiere MH, Lindbäck T, Andersson M, Schulz A, et al. Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology (N Y). 2005;151(1):183–97.

CAS  Google Scholar 

Guinebretière MH, Broussolle V, Nguyen-The C. Enterotoxigenic profiles of food-poisoning and food-borne Bacillus cereus strains. J Clin Microbiol. 2002;40(8):3053–6.

Article  PubMed  PubMed Central  Google Scholar 

Lindbäck T, Hardy SP, Dietrich R, Sødring M, Didier A, Moravek M, et al. Cytotoxicity of the Bacillus cereus Nhe enterotoxin requires specific binding order of its three exoprotein components. Infect Immun. 2010;78(9):3813–21.

Article  PubMed  PubMed Central  Google Scholar 

Heilkenbrinker U, Dietrich R, Didier A, Zhu K, Lindbäck T, Granum PE, et al. Complex Formation between NheB and NheC Is Necessary to Induce Cytotoxic Activity by the Three-Component Bacillus cereus Nhe Enterotoxin. PLoS ONE. 2013;8(4):e63104.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lindback T. Characterization of the Bacillus cereus Nhe enterotoxin. Microbiology (N Y). 2004;150(12):3959–67.

Google Scholar 

Didier A, Dietrich R, Gruber S, Bock S, Moravek M, Nakamura T, et al. Monoclonal antibodies neutralize Bacillus cereus nhe enterotoxin by inhibiting ordered binding of its three exoprotein components. Infect Immun. 2012;80(2):832–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clair G, Roussi S, Armengaud J, Duport C. Expanding the known repertoire of virulence factors produced by Bacillus cereus through early secretome profiling in three redox conditions. Mol Cell Proteomics. 2010;9(7):1486–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duport C, Rousset L, Alpha-Bazin B, Armengaud J. Bacillus cereus decreases NHE and CLO exotoxin synthesis to maintain appropriate proteome dynamics during growth at low temperature. Toxins. 2020;12(10):645.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oda M, Yokotani A, Hayashi N, Kamoshida G. Role of sphingomyelinase in the pathogenesis of Bacillus cereus Infection. Biol Pharm Bull. 2020;43(2):250–3.

Article  CAS  PubMed  Google Scholar 

Lyu Y, Ye L, Xu J, Yang X, Chen W, Yu H. Recent research progress with phospholipase C from Bacillus cereus. Biotechnol Lett. 2016;38(1):23–31.

Article  PubMed  Google Scholar 

Enosi Tuipulotu D, Mathur A, Ngo C, Man SM. Bacillus cereus: epidemiology, virulence factors, and host-pathogen interactions. Trends Microbiol. 2021;29(5):458–71.

Article  CAS  PubMed  Google Scholar 

Beecher DJ, Wong ACL. Cooperative, synergistic and antagonistic haemolytic interactions between haemolysin BL, phosphatidylcholine phospholipase C and sphingomyelinase from Bacillus cereus. Microbiology (N Y). 2000;146(12):3033–9.

CAS  Google Scholar 

Doll VM, Ehling-Schulz M, Vogelmann R. Concerted action of sphingomyelinase and non-hemolytic enterotoxin in pathogenic Bacillus cereus. PLoS ONE. 2013;8(4):e61404.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ago H, Oda M, Takahashi M, Tsuge H, Ochi S, Katunuma N, et al. Structural basis of the sphingomyelin phosphodiesterase activity in neutral sphingomyelinase from Bacillus cereus. J Biol Chem. 2006;281(23):16157–67.

Article  CAS  PubMed  Google Scholar 

Jessberger N, Kranzler M, Da Riol C, Schwenk V, Buchacher T, Dietrich R, et al. Assessing the toxic potential of enteropathogenic Bacillus cereus. Food Microbiol. 2019;84:103276.

Article  CAS  PubMed  Google Scholar 

Deatherage BL, Cookson BT. Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect Immun. 2012;80(6):1948–57.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Woith E, Fuhrmann G, Melzig MF. Extracellular vesicles—connecting kingdoms. Int J Mol Sci. 2019;20(22):5695.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deatherage BL, Lara JC, Bergsbaken T, Barrett SLR, Lara S, Cookson BT. Biogenesis of bacterial membrane vesicles. Mol Microbiol. 2009;72(6):1395–407.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol. 2015;13(10):605–19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown L, Wolf JM, Prados-Rosales R, Casadevall A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol. 2015;13(10):620–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Briaud P, Carroll RK. Extracellular vesicle biogenesis and functions in gram-positive bacteria. Infect Immun. 2020;88(12):e00433-20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nagakubo T, Nomura N, Toyofuku M. Cracking open bacterial membrane vesicles. Front Microbiol. 2020;17:10.

Google Scholar 

Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles. Nat Rev Microbiol. 2019;17(1):13–24.

Article  CAS  PubMed  Google Scholar 

Toyofuku M, Cárcamo-Oyarce G, Yamamoto T, Eisenstein F, Hsiao CC, Kurosawa M, et al. Prophage-triggered membrane vesicle formation through peptidoglycan damage in Bacillus subtilis. Nat Commun. 2017;8(1):481.

Article  PubMed  PubMed Central  Google Scholar 

Wang X, Thompson CD, Weidenmaier C, Lee JC. Release of Staphylococcus aureus extracellular vesicles and their application as a vaccine platform. Nat Commun. 2018;9(1):1379.

Article  PubMed  PubMed Central  Google Scholar 

Liu Y, Defourny KAY, Smid EJ, Abee T. Gram-positive bacterial extracellular vesicles and their impact on health and disease. Front Microbiol. 2018;9:9.

Google Scholar 

Gill S, Catchpole R, Forterre P. Extracellular membrane vesicles in the three domains of life and beyond. FEMS Microbiol Rev. 2019;43(3):273–303.

Article  CAS  PubMed  Google Scholar 

Thay B, Wai SN, Oscarsson J. Staphylococcus aureus α-Toxin-Dependent Induction of Host Cell Death by Membrane-Derived Vesicles. PLoS ONE. 2013;8(1):e54661.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif