The pattern of histone H3 epigenetic posttranslational modifications is regulated by the VRK1 chromatin kinase

Woodcock CL, Ghosh RP. Chromatin higher-order structure and dynamics. Cold Spring Harb Perspect Biol. 2010;2(5):a000596. https://doi.org/10.1101/cshperspect.a000596.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yadav T, Quivy JP, Almouzni G. Chromatin plasticity: a versatile landscape that underlies cell fate and identity. Science. 2018;361(6409):1332–6. https://doi.org/10.1126/science.aat8950.

Article  CAS  PubMed  Google Scholar 

Nicolas E, Roumillac C, Trouche D. Balance between acetylation and methylation of histone H3 lysine 9 on the E2F-responsive dihydrofolate reductase promoter. Mol Cell Biol. 2003;23(5):1614–22. https://doi.org/10.1128/mcb.23.5.1614-1622.2003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ 3rd. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 2002;16(8):919–32. https://doi.org/10.1101/gad.973302.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raisner R, Kharbanda S, Jin L, Jeng E, Chan E, Merchant M, Haverty PM, Bainer R, Cheung T, Arnott D, et al. Enhancer activity requires CBP/P300 bromodomain-dependent histone H3K27 acetylation. Cell Rep. 2018;24(7):1722–9. https://doi.org/10.1016/j.celrep.2018.07.041.

Article  CAS  PubMed  Google Scholar 

Audia JE, Campbell RM. Histone modifications and cancer. Cold Spring Harb Perspect Biol. 2016;8(4):a019521. https://doi.org/10.1101/cshperspect.a019521.

Article  PubMed  PubMed Central  Google Scholar 

Lavarone E, Barbieri CM, Pasini D. Dissecting the role of H3K27 acetylation and methylation in PRC2 mediated control of cellular identity. Nat Commun. 2019;10(1):1679. https://doi.org/10.1038/s41467-019-09624-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eissenberg JC, Shilatifard A. Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev Biol. 2010;339(2):240–9. https://doi.org/10.1016/j.ydbio.2009.08.017.

Article  CAS  PubMed  Google Scholar 

Becker PB, Workman JL. Nucleosome remodeling and epigenetics. Cold Spring Harb Perspect Biol. 2013;5(9):a017905. https://doi.org/10.1101/cshperspect.a017905.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ehrenhofer-Murray AE. Chromatin dynamics at DNA replication, transcription and repair. Eur J Biochem. 2004;271(12):2335–49. https://doi.org/10.1111/j.1432-1033.2004.04162.x.

Article  CAS  PubMed  Google Scholar 

Aihara H, Nakagawa T, Mizusaki H, Yoneda M, Kato M, Doiguchi M, Imamura Y, Higashi M, Ikura T, Hayashi T, et al. Histone H2A T120 phosphorylation promotes oncogenic transformation via upregulation of cyclin D1. Mol Cell. 2016;64(1):176–88. https://doi.org/10.1016/j.molcel.2016.09.012.

Article  CAS  PubMed  Google Scholar 

Eswaran J, Patnaik D, Filippakopoulos P, Wang F, Stein RL, Murray JW, Higgins JM, Knapp S. Structure and functional characterization of the atypical human kinase haspin. Proc Natl Acad Sci USA. 2009;106(48):20198–203. https://doi.org/10.1073/pnas.0901989106.

Article  PubMed  PubMed Central  Google Scholar 

Fedorov O, Marsden B, Pogacic V, Rellos P, Muller S, Bullock AN, Schwaller J, Sundstrom M, Knapp S. A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Proc Natl Acad Sci USA. 2007;104(51):20523–8. https://doi.org/10.1073/pnas.0708800104.

Article  PubMed  PubMed Central  Google Scholar 

Vazquez-Cedeira M, Barcia-Sanjurjo I, Sanz-Garcia M, Barcia R, Lazo PA. Differential inhibitor sensitivity between human kinases VRK1 and VRK2. PLoS ONE. 2011;6(8):e23235. https://doi.org/10.1371/journal.pone.0023235.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Counago RM, Allerston CK, Savitsky P, Azevedo H, Godoi PH, Wells CI, Mascarello A, de Souza Gama FH, Massirer KB, Zuercher WJ, et al. Structural characterization of human vaccinia-related kinases (VRK) bound to small-molecule inhibitors identifies different P-loop conformations. Sci Rep. 2017;7(1):7501. https://doi.org/10.1038/s41598-017-07755-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Serafim RAM, de Souza Gama FH, Dutra LA, Dos Reis CV, Vasconcelos SNS, da Silva SA, Takarada JE, Di Pillo F, Azevedo H, Mascarello A, et al. Development of pyridine-based inhibitors for the human vaccinia-related kinases 1 and 2. ACS Med Chem Lett. 2019;10(9):1266–71. https://doi.org/10.1021/acsmedchemlett.9b00082.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Valbuena A, López-Sánchez I, Lazo PA. Human VRK1 is an early response gene and its loss causes a block in cell cycle progression. PLoS ONE. 2008;3(2):e1642. https://doi.org/10.1371/journal.pone.0001642.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Valbuena A, Sanz-Garcia M, Lopez-Sanchez I, Vega FM, Lazo PA. Roles of VRK1 as a new player in the control of biological processes required for cell division. Cell Signal. 2011;23(8):1267–72. https://doi.org/10.1016/j.cellsig.2011.04.002.

Article  CAS  PubMed  Google Scholar 

Moura DS, Campillo-Marcos I, Vazquez-Cedeira M, Lazo PA. VRK1 and AURKB form a complex that cross inhibit their kinase activity and the phosphorylation of histone H3 in the progression of mitosis. Cell Mol Life Sci. 2018;76:2591–611. https://doi.org/10.1007/s00018-018-2746-7.

Article  CAS  Google Scholar 

Campillo-Marcos I, García-González R, Navarro-Carrasco E, Lazo PA. The human VRK1 chromatin kinase in cancer biology. Cancer Lett. 2021;503:117–28. https://doi.org/10.1016/j.canlet.2020.12.032.

Article  CAS  PubMed  Google Scholar 

Santos CR, Rodriguez-Pinilla M, Vega FM, Rodriguez-Peralto JL, Blanco S, Sevilla A, Valbuena A, Hernandez T, van Wijnen AJ, Li F, et al. VRK1 signaling pathway in the context of the proliferation phenotype in head and neck squamous cell carcinoma. Mol Cancer Res. 2006;4(3):177–85. https://doi.org/10.1158/1541-7786.MCR-05-0212.

Article  CAS  PubMed  Google Scholar 

Wang L, Zhai R, Shen H, Song G, Wan F, Li Q. VRK1 promotes proliferation, migration, and invasion of gastric carcinoma cells by activating β-catenin. Neoplasma. 2021. https://doi.org/10.4149/neo_2021_210304N278.

Article  PubMed  Google Scholar 

Ryu HG, Jung Y, Lee N, Seo JY, Kim SW, Lee KH, Kim DY, Kim KT. HNRNP A1 promotes lung cancer cell proliferation by modulating VRK1 translation. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22115506.

Colmenero-Repiso A, Gómez-Muñoz MA, Rodríguez-Prieto I, Amador-Álvarez A, Henrich KO, Pascual-Vaca D, Okonechnikov K, Rivas E, Westermann F, Pardal R, et al. Identification of VRK1 as a new neuroblastoma tumor progression marker regulating cell proliferation. Cancers (Basel). 2020. https://doi.org/10.3390/cancers12113465.

Liu J, Wang Y, He S, Xu X, Huang Y, Tang J, Wu Y, Miao X, He Y, Wang Q, et al. Expression of vaccinia-related kinase 1 (VRK1) accelerates cell proliferation but overcomes cell adhesion mediated drug resistance (CAM-DR) in multiple myeloma. Hematology. 2016;21(10):603–12. https://doi.org/10.1080/10245332.2016.1147678.

Article  CAS  PubMed  Google Scholar 

Campillo-Marcos I, Lazo PA. Implication of the VRK1 chromatin kinase in the signaling responses to DNA damage: a therapeutic target? Cell Mol Life Sci. 2018;75(13):2375–88. https://doi.org/10.1007/s00018-018-2811-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Budziszewski GR, Zhao Y, Spangler CJ, Kedziora KM, Williams MR, Azzam DN, Skrajna A, Koyama Y, Cesmat AP, Simmons HC, et al. Multivalent DNA and nucleosome acidic patch interactions specify VRK1 mitotic localization and activity. Nucl Acids Res. 2022;50(8):4355–71. https://doi.org/10.1093/nar/gkac198.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kang TH, Park DY, Choi YH, Kim KJ, Yoon HS, Kim KT. Mitotic histone H3 phosphorylation by vaccinia-related kinase 1 in mammalian cells. Mol Cell Biol. 2007;27(24):8533–46. https://doi.org/10.1128/MCB.00018-07.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL. Histone H4–K16 acetylation controls chromatin structure and protein interactions. Science. 2006;311(5762):844–7. https://doi.org/10.1126/science.1124000.

Article  CAS  PubMed  Google Scholar 

Garcia-Gonzalez R, Morejon-Garcia P, Campillo-Marcos I, Salzano M, Lazo PA. VRK1 phosphorylates Tip60/KAT5 and is required for H4K16 acetylation in response to DNA damage. Cancers (Basel). 2020;12(10):2986. https://doi.org/10.3390/cancers12102986.

Article  CAS  PubMed  Google Scholar 

García-González R, Monte-Serrano E, Morejón-García P, Navarro-Carrasco E, Lazo PA. The VRK1 chromatin kinase regulates the acetyltransferase activity of Tip60/KAT5 by sequential phosphorylations in response to DNA damage. Biochim Biophys Acta Gene Regul Mech. 2022;1865(8):194887. https://doi.org/10.1016/j.bbagrm.2022.194887.

Article  CAS  PubMed  Google Scholar 

Salzano M, Sanz-Garcia M, Monsalve DM, Moura DS, Lazo PA. VRK1 chromatin kinase phosphorylates H2AX and is required for foci formation induced by DNA damage. Epigenetics. 2015;10(5):373–83. https://doi.org/10.1080/15592294.2015.1028708.

Article  PubMed  PubMed Central  Google Scholar 

Lopez-Borges S, Lazo PA. The human vaccinia-related kinase 1 (VRK1) phosphorylates threonine-18 within the mdm-2 binding site of the p53 tumour suppressor protein. Oncogene. 2000;19(32):3656–64. https://doi.org/10.1038/sj.onc.1203709.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif