Visualizing GABA transporters in vivo: an overview of reported radioligands and future directions

Buddhala C, Hsu C-C, Wu J-Y. A novel mechanism for GABA synthesis and packaging into synaptic vesicles. Neurochem Int. 2009;55:9–12. https://doi.org/10.1016/j.neuint.2009.01.020.

Article  CAS  PubMed  Google Scholar 

Owens DF, Kriegstein AR. Is there more to gaba than synaptic inhibition? Nat Rev Neurosci. 2002;3:715–27. https://doi.org/10.1038/nrn919.

Article  CAS  PubMed  Google Scholar 

Bowery NG, Smart TG. GABA and glycine as neurotransmitters: a brief history. Br J Pharmacol. 2006;147:S109–19. https://doi.org/10.1038/sj.bjp.0706443.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang W, Xiong B-R, Zhang L-Q, Huang X, Yuan X, Tian Y-K, et al. The role of the GABAergic system in diseases of the central nervous system. Neuroscience. 2021;470:88–99. https://doi.org/10.1016/j.neuroscience.2021.06.037.

Article  CAS  PubMed  Google Scholar 

Murrell E, Pham JM, Sowa AR, Brooks AF, Kilbourn MR, Scott PJH, et al. Classics in neuroimaging: development of positron emission tomography tracers for imaging the GABAergic pathway. ACS Chem Neurosci. 2020;11:2039–44. https://doi.org/10.1021/acschemneuro.0c00343.

Article  CAS  PubMed  Google Scholar 

Andersson JD, Matuskey D, Finnema SJ. Positron emission tomography imaging of the γ-aminobutyric acid system. Neurosci Lett. 2019;691:35–43. https://doi.org/10.1016/j.neulet.2018.08.010.

Article  CAS  PubMed  Google Scholar 

Kilbourn MR. 11C- and 18F-radiotracers for in vivo imaging of the dopamine system: past, present and future. Biomedicines. 2021;9:108. https://doi.org/10.3390/biomedicines9020108.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kilbourn MR. Small molecule PET tracers for transporter imaging. Semin Nucl Med. 2017;47:536–52. https://doi.org/10.1053/j.semnuclmed.2017.05.005.

Article  PubMed  Google Scholar 

Bröer S, Gether U. The solute carrier 6 family of transporters. Br J Pharmacol. 2012;167:256–78. https://doi.org/10.1111/j.1476-5381.2012.01975.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen N-H, Reith MEA, Quick MW. Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflugers Arch. 2004;447:519–31. https://doi.org/10.1007/s00424-003-1064-5.

Article  CAS  PubMed  Google Scholar 

Nelson N. The family of Na+/Cl− neurotransmitter transporters. J Neurochem. 1998;71:1785–803. https://doi.org/10.1046/j.1471-4159.1998.71051785.x.

Article  CAS  PubMed  Google Scholar 

Radian R, Bendahan A, Kanner BI. Purification and identification of the functional sodium- and chloride-coupled gamma-aminobutyric acid transport glycoprotein from rat brain. J Biol Chem. 1986;261:15437–41.

Article  CAS  PubMed  Google Scholar 

Madsen KK, Clausen RP, Larsson OM, Krogsgaard-Larsen P, Schousboe A, Steve WH. Synaptic and extrasynaptic GABA transporters as targets for anti-epileptic drugs. J Neurochem. 2009;109:139–44. https://doi.org/10.1111/j.1471-4159.2009.05982.x.

Article  CAS  PubMed  Google Scholar 

Borden LA. GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem Int. 1996;29:335–56. https://doi.org/10.1016/0197-0186(95)00158-1.

Article  CAS  PubMed  Google Scholar 

Durkin MM, Smith KE, Borden LA, Weinshank RL, Branchek TA, Gustafson EL. Localization of messenger RNAs encoding three GABA transporters in rat brain: an in situ hybridization study. Mol Brain Res. 1995;33:7–21. https://doi.org/10.1016/0169-328X(95)00101-W.

Article  CAS  PubMed  Google Scholar 

During MJ, Ryder KM, Spencer DD. Hippocampal GABA transporter function in temporal-lobe epilepsy. Nature. 1995;376:174–7. https://doi.org/10.1038/376174a0.

Article  CAS  PubMed  Google Scholar 

Williamson A, Telfeian AE, Spencer DD. Prolonged GABA responses in dentate granule cells in slices isolated from patients with temporal lobe sclerosis. J Neurophysiol. 1995;74:378–87. https://doi.org/10.1152/jn.1995.74.1.378.

Article  CAS  PubMed  Google Scholar 

Mathern GW, Mendoza D, Lozada A, Pretorius JK, Dehnes Y, Danbolt NC, et al. Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsy. Neurology. 1999;52:453. https://doi.org/10.1212/wnl.52.3.453.

Article  CAS  PubMed  Google Scholar 

Treiman DM. GABAergic mechanisms in epilepsy. Epilepsia. 2001;42:8–12. https://doi.org/10.1046/j.1528-1157.2001.042suppl.3008.x.

Article  PubMed  Google Scholar 

Hoogland G, Spierenburg HA, van Veelen CWM, van Rijen PC, van Huffelen AC, de Graan PNE. Synaptosomal glutamate and GABA transport in patients with temporal lobe epilepsy. J Neurosci Res. 2004;76:881–90. https://doi.org/10.1002/jnr.20128.

Article  CAS  PubMed  Google Scholar 

Braestrup C, Nielsen EB, Sonnewald U, Knutsen LJS, Andersen KE, Jansen JA, et al. (R)-N-[4,4-Bis(3-Methyl-2-Thienyl)but-3-en-1-yl]nipecotic acid binds with high affinity to the brain γ-aminobutyric acid uptake carrier. J Neurochem. 1990;54:639–47. https://doi.org/10.1111/j.1471-4159.1990.tb01919.x.

Article  CAS  PubMed  Google Scholar 

Nielsen EB, Suzdak PD, Andersen KE, Knutsen LJS, Sonnewald U, Braestrup C. Characterization of tiagabine (NO-328), a new potent and selective GABA uptake inhibitor. Eur J Pharmacol. 1991;196:257–66. https://doi.org/10.1016/0014-2999(91)90438-V.

Article  CAS  PubMed  Google Scholar 

Andersen KE, Braestrup C, Groenwald FC, Joergensen AS, Nielsen EB, Sonnewald U, et al. The synthesis of novel GABA uptake inhibitors. 1. Elucidation of the structure-activity studies leading to the choice of (R)-1-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-3-piperidinecarboxylic acid (Tiagabine) as an anticonvulsant drug candidate. J Med Chem. 1993;36:1716–25. https://doi.org/10.1021/jm00064a005.

Article  CAS  PubMed  Google Scholar 

Czuczwar SJ, Patsalos PN. The new generation of GABA enhancers. CNS Drugs. 2001;15:339–50. https://doi.org/10.2165/00023210-200115050-00001.

Article  CAS  PubMed  Google Scholar 

Krogsgaard-Larsen P, Johnston GAR. Inhibition of GABA uptake in rat brain slices by nipecotic acid, various isoxazoles and related compounds. J Neurochem. 1975;25:797–802. https://doi.org/10.1111/j.1471-4159.1975.tb04410.x.

Article  CAS  PubMed  Google Scholar 

Johnston GAR, Krogsgaard-Larsen P, Stephanson A. Betel nut constituents as inhibitors of γ-aminobutyric acid uptake. Nature. 1975;258:627–8. https://doi.org/10.1038/258627a0.

Article  CAS  PubMed  Google Scholar 

Johnston GAR, Krogsgaard-Larsen P, Stephanwn AL, Twitchin B. Inhibition of the uptake of GABA and related amino acids in rat brain slices by the optical isomers of nipecotic acid. J Neurochem. 1976;26:1029–32. https://doi.org/10.1111/j.1471-4159.1976.tb06488.x.

Article  CAS  PubMed  Google Scholar 

Ali FE, Bondinell WE, Dandridge PA, Frazee JS, Garvey E, Girard GR, et al. Orally active and potent inhibitors of γ-aminobutyric acid uptake. J Med Chem. 1985;28:653–60. https://doi.org/10.1021/jm50001a020.

Article  CAS  PubMed  Google Scholar 

Nielsen L, Brehm L, Krogsgaard-Larsen P. GABA agonists and uptake inhibitors. Synthesis, absolute stereochemistry, and enantioselectivity of (R)-(-)- and (S)-(+)-homo-.beta.-proline. J Med Chem. 1990;33:71–7. https://doi.org/10.1021/jm00163a012.

Article  CAS  PubMed  Google Scholar 

Dhar TGM, Borden LA, Tyagarajan S, Smith KE, Branchek TA, Weinshank RL, et al. Design, synthesis and evaluation of substituted triarylnipecotic acid derivatives as GABA uptake inhibitors: identification of a ligand with moderate affinity and selectivity for the cloned human GABA transporter GAT-3. J Med Chem. 1994;37:2334–42. https://doi.org/10.1021/jm00041a012.

Article  CAS  PubMed  Google Scholar 

Kragler A, Höfner G, Wanner KT. Novel parent structures for inhibitors of the murine GABA transporters mGAT3 and mGAT4. Eur J Pharmacol. 2005;519:43–7. https://doi.org/10.1016/j.ejphar.2005.06.053.

Article  CAS  PubMed  Google Scholar 

Palló A, Bencsura Á, Héja L, Beke T, Perczel A, Kardos J, et al. Major human γ-aminobutyrate transporter: in silico prediction of substrate efficacy. Biochem Biophys Res Commun. 2007;364:952–8. https://doi.org/10.1016/j.bbrc.2007.10.108.

Article  CAS  PubMed  Google Scholar 

Wein T, Wanner KT. Generation of a 3D model for human GABA transporter hGAT-1 using molecular modeling and investigation of the binding of GABA. J Mol Model. 2010;16:155–61. https://doi.org/10.1007/s00894-009-0520-3.

Article  CAS  PubMed  Google Scholar 

Baglo Y, Gabrielsen M, Sylte I, Gederaas OA. Homology modeling of human γ-butyric acid transporters and the binding of pro-drugs 5-aminolevulinic acid and methyl aminolevulinic acid used in photodynamic therapy. PLoS ONE. 2013;8:e65200-e. https://doi.org/10.1371/journal.pone.0065200.

Article  CAS  Google Scholar 

Skovstrup S, Taboureau O, Bräuner-Osborne H, Jørgensen FS. Homology modelling of the GABA transporter and analysis of tiagabine binding. ChemMedChem. 2010;5:986–1000. https://doi.org/10.1002/cmdc.201000100.

留言 (0)

沒有登入
gif