MicroRNA-130a-3p impedes the progression of papillary thyroid carcinoma through downregulation of KPNB1 by targeting PSME3

F. Khatami, S.M. Tavangar, Liquid biopsy in thyroid cancer: new insight. Int. J. Hematol. Oncol. Stem Cell. Res. 12(3), 235–248 (2018)

PubMed  PubMed Central  Google Scholar 

Z.W. Baloch, V.A. LiVolsi, Special types of thyroid carcinoma. Histopathology 72(1), 40–52 (2018)

Article  PubMed  Google Scholar 

J. Mao, Q. Zhang, H. Zhang, K. Zheng, R. Wang, G. Wang, Risk factors for lymph node metastasis in papillary thyroid carcinoma: a systematic review and meta-analysis. Front Endocrinol. (Lausanne) 11, 265 (2020)

Article  PubMed  Google Scholar 

A. Prete, P. Borges de Souza, S. Censi, M. Muzza, N. Nucci, M. Sponziello, Update on fundamental mechanisms of thyroid cancer. Front Endocrinol. (Lausanne) 11, 102 (2020)

Article  PubMed  Google Scholar 

M. Correia de Sousa, M. Gjorgjieva, D. Dolicka, C. Sobolewski, M. Foti, Deciphering miRNAs’ Action through miRNA Editing. Int. J. Mol. Sci. 20(24), (2019).

R. Rupaimoole, F.J. Slack, MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 16(3), 203–222 (2017)

Article  CAS  PubMed  Google Scholar 

Y.T. Fu, H.B. Zheng, D.Q. Zhang, L. Zhou, H. Sun, MicroRNA-1266 suppresses papillary thyroid carcinoma cell metastasis and growth via targeting FGFR2. Eur. Rev. Med. Pharmacol. Sci. 22(11), 3430–3438 (2018)

PubMed  Google Scholar 

F. Liu, K. Lou, X. Zhao, J. Zhang, W. Chen, Y. Qian, Y. Zhao, Y. Zhu, Y. Zhang, miR-214 regulates papillary thyroid carcinoma cell proliferation and metastasis by targeting PSMD10. Int. J. Mol. Med. 42(6), 3027–3036 (2018)

CAS  PubMed  PubMed Central  Google Scholar 

W.J. Wang, Y. Yuan, D. Zhang, P. Liu, F. Liu, miR-671-5p repressed progression of papillary thyroid carcinoma via TRIM14. Kaohsiung J. Med. Sci. 37(11), 983–990 (2021)

Article  PubMed  Google Scholar 

X. Wen, J. Du, X. Wang, Circ_0039411 promotes papillary thyroid carcinoma development through mediating the miR-423-5p/SOX4 signaling. Int. J. Biol. Markers 36(4), 10–20 (2021)

Article  CAS  PubMed  Google Scholar 

W. Hu, X. Zheng, J. Liu, M. Zhang, Y. Liang, M. Song, MicroRNA MiR-130a-3p promotes gastric cancer by targeting Glucosaminyl N-acetyl transferase 4 (GCNT4) to regulate the TGF-beta1/SMAD3 pathway. Bioengineered 12(2), 11634–11647 (2021)

Article  CAS  PubMed  PubMed Central  Google Scholar 

L. Liu, P. Wang, Y.S. Wang, Y.N. Zhang, C. Li, Z.Y. Yang, Z.H. Liu, T.Z. Zhan, J. Xu, C.M. Xia, MiR-130a-3p alleviates liver fibrosis by suppressing hscs activation and skewing macrophage to Ly6C(lo) phenotype. Front Immunol. 12, 696069 (2021)

Article  CAS  PubMed  PubMed Central  Google Scholar 

X. Luo, J. Wang, X. Wei, S. Wang, A. Wang, Knockdown of lncRNA MFI2-AS1 inhibits lipopolysaccharide-induced osteoarthritis progression by miR-130a-3p/TCF4. Life Sci. 240, 117019 (2020)

Article  CAS  PubMed  Google Scholar 

G.L. Song, M. Xiao, X.Y. Wan, J. Deng, J.D. Ling, Y.G. Tian, M. Li, J. Yin, R.Y. Zheng, Y. Tang, G.Y. Liu, MiR-130a-3p suppresses colorectal cancer growth by targeting Wnt Family Member 1 (WNT1). Bioengineered 12(1), 8407–8418 (2021)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Y. Wang, M. Shi, Z. Hong, J. Kang, H. Pan, C. Yan, MiR-130a-3p has protective effects in alzheimer’s disease via targeting DAPK1. Am. J. Alzheimers Dis. Other Demen 36, 15333175211020572 (2021)

Article  PubMed  Google Scholar 

J. Zhao, H. Wang, J. Zhou, J. Qian, H. Yang, Y. Zhou, H. Ding, Y. Gong, X. Qi, Y. Jiao, P. Ying, L. Tang, Y. Sun, W. Zhu, miR-130a-3p, a preclinical therapeutic target for Crohn’s disease. J. Crohns Colitis 15(4), 647–664 (2021)

Article  PubMed  Google Scholar 

G. Yin, W. Kong, S. Zheng, Y. Shan, J. Zhang, R. Ying, H. Wu, Exosomal miR-130a-3p promotes the progression of differentiated thyroid cancer by targeting insulin-like growth factor 1. Oncol. Lett. 21(4), 283 (2021)

Article  CAS  PubMed  PubMed Central  Google Scholar 

D. Fesquet, D. Lleres, C. Grimaud, C. Vigano, F. Mechali, S. Boulon, O. Coux, C. Bonne-Andrea, V. Baldin, The 20S proteasome activator PA28gamma controls the compaction of chromatin. J. Cell Sci. 134(3), (2021).

C. Jiao, L. Li, P. Zhang, L. Zhang, K. Li, R. Fang, L. Yuan, K. Shi, L. Pan, Q. Guo, X. Gao, G. Chen, S. Xu, Q. Wang, D. Zuo, W. Wu, S. Qiao, X. Wang, R. Moses, J. Xiao, L. Li, Y. Dang, X. Li, REGgamma ablation impedes dedifferentiation of anaplastic thyroid carcinoma and accentuates radio-therapeutic response by regulating the Smad7-TGF-beta pathway. Cell Death Differ. 27(2), 497–508 (2020)

Article  CAS  PubMed  Google Scholar 

M.Z. Bhatti, L. Pan, T. Wang, P. Shi, L. Li, REGgamma potentiates TGF-beta/Smad signal dependent epithelial-mesenchymal transition in thyroid cancer cells. Cell Signal 64, 109412 (2019)

Article  CAS  PubMed  Google Scholar 

T. Okamura, S. Taniguchi, T. Ohkura, A. Yoshida, H. Shimizu, M. Sakai, H. Maeta, H. Fukui, Y. Ueta, I. Hisatome, C. Shigemasa, Abnormally high expression of proteasome activator-gamma in thyroid neoplasm. J. Clin. Endocrinol. Metab. 88(3), 1374–1383 (2003)

Article  CAS  PubMed  Google Scholar 

J. Guo, J. Hao, H. Jiang, J. Jin, H. Wu, Z. Jin, Z. Li, Proteasome activator subunit 3 promotes pancreatic cancer growth via c-Myc-glycolysis signaling axis. Cancer Lett 38, 6161–6167 (2017)

Google Scholar 

M. Jiang, Y. Zhu, H. Yu, Ginsenoside 20(S)-Rg3 suppresses cell viability in esophageal squamous cell carcinoma via modulating miR-324-5p-targeted PSME3. Hum. Exp. Toxicol. 40(11), 1974–1984 (2021)

Article  CAS  PubMed  Google Scholar 

C. Liu, J. Yang, H. Wu, J. Li, Downregulated miR-585-3p promotes cell growth and proliferation in colon cancer by upregulating PSME3. Onco. Targets Ther. 12, 6525–6534 (2019)

Article  CAS  PubMed  PubMed Central  Google Scholar 

L. Qi, W. He, REGgamma is associated with lymph node metastasis and T-stage in papillary thyroid carcinoma. Med. Sci. Monit 24, 1373–1378 (2018)

Article  CAS  PubMed  PubMed Central  Google Scholar 

L.E. Kapinos, B. Huang, C. Rencurel, R.Y.H. Lim, Karyopherins regulate nuclear pore complex barrier and transport function. J. Cell Biol. 216(11), 3609–3624 (2017)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Y. Quan, Z.L. Ji, X. Wang, A.M. Tartakoff, T. Tao, Evolutionary and transcriptional analysis of karyopherin beta superfamily proteins. Mol. Cell Proteom. 7(7), 1254–1269 (2008)

Article  CAS  Google Scholar 

W. Du, J. Zhu, Y. Zeng, T. Liu, Y. Zhang, T. Cai, Y. Fu, W. Zhang, R. Zhang, Z. Liu, J.A. Huang, KPNB1-mediated nuclear translocation of PD-L1 promotes non-small cell lung cancer cell proliferation via the Gas6/MerTK signaling pathway. Cell Death Differ 28(4), 1284–1300 (2021)

Article  CAS  PubMed  Google Scholar 

M. Kodama, T. Kodama, J.Y. Newberg, H. Katayama, M. Kobayashi, S.M. Hanash, K. Yoshihara, Z. Wei, J.C. Tien, R. Rangel, K. Hashimoto, S. Mabuchi, K. Sawada, T. Kimura, N.G. Copeland, N.A. Jenkins, In vivo loss-of-function screens identify KPNB1 as a new druggable oncogene in epithelial ovarian cancer. Proc. Natl. Acad. Sci. USA. 114(35), E7301–E7310 (2017)

Article  CAS  PubMed  PubMed Central  Google Scholar 

J. Yang, Y. Guo, C. Lu, R. Zhang, Y. Wang, L. Luo, Y. Zhang, C.H. Chu, K.J. Wang, S. Obbad, W. Yan, X. Li, Inhibition of Karyopherin beta 1 suppresses prostate cancer growth. Oncogene 38(24), 4700–4714 (2019)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Z.C. Zhu, J.W. Liu, K. Li, J. Zheng, Z.Q. Xiong, KPNB1 inhibition disrupts proteostasis and triggers unfolded protein response-mediated apoptosis in glioblastoma cells. Oncogene 37(22), 2936–2952 (2018)

Article  CAS  PubMed  PubMed Central  Google Scholar 

M. Jurikova, L. Danihel, S. Polak, I. Varga, Ki67, PCNA, and MCM proteins: markers of proliferation in the diagnosis of breast cancer. Acta Histochem. 118(5), 544–552 (2016)

Article  CAS  PubMed  Google Scholar 

C.Y. Loh, J.Y. Chai, T.F. Tang, W.F. Wong, G. Sethi, M.K. Shanmugam, P.P. Chong, C.Y. Looi, The E-Cadherin and N-Cadherin switch in epithelial-to-mesenchymal transition: signaling, therapeutic implications, and challenges. Cells 8(10), (2019).

N.M. Aiello, Y. Kang, Context-dependent EMT programs in cancer metastasis. J Exp Med 216(5), 1016–1026 (2019)

Article  CAS  PubMed  PubMed Central  Google Scholar 

M.I. Abdullah, S.M. Junit, K.L. Ng, J.J. Jayapalan, B. Karikalan, O.H. Hashim, Papillary thyroid cancer: genetic alterations and molecular biomarker investigations. Int. J. Med. Sci. 16(3), 450–460 (2019)

Article  CAS  PubMed  PubMed Central  Google Scholar 

S. Ulisse, E. Baldini, A. Lauro, D. Pironi, D. Tripodi, E. Lori, I.C. Ferent, M.I. Amabile, A. Catania, F.M. Di Matteo, F. Forte, A. Santoro, P. Palumbo, V. D’Andrea, S. Sorrenti, Papillary thyroid cancer prognosis: an evolving field. Cancers (Basel) 13(21), (2021).

X. Kong, J. Zhang, J. Li, J. Shao, L. Fang, MiR-130a-3p inhibits migration and invasion by regulating RAB5B in human breast cancer stem cell-like cells. Biochem. Biophys. Res. Commun. 501(2), 486–493 (2018)

Article  CAS  PubMed  Google Scholar 

J. Zhu, Y. Luo, Y. Zhao, Y. Kong, H. Zheng, Y. Li, B. Gao, L. Ai, H. Huang, J. Huang, Z. Li, C. Chen, circEHBP1 promotes lymphangiogenesis and lymphatic metastasis of bladder cancer via miR-130a-3p/TGFbetaR1/VEGF-D signaling. Mol. Ther. 29(5), 1838–1852 (2021)

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif