Structural, magnetic and antibacterial properties of manganese-substituted magnetite ferrofluids

A. Sohail, M. Fatima, R. Ellahi, and K.B. Akram, A video-graphic assessment of ferrofluid during magnetic drug targeting: An application of artificial intelligence in nanomedicine, J. Mol. Liq., 285(2019), p. 47.

Article  CAS  Google Scholar 

D. Yuliantika, A. Taufiq, and E.G.R. Putra, Hierarchical structure and antibacterial activity of olive oil based MZFe2O4 ferrofluids, J. Phys.: Conf. Ser., 1436(2020), No. 1, art. No. 012145.

W. Lin, B. Liu, H. Zhang, et al., Laser-induced thermal effect for tunable filter employing ferrofluid and fiber taper coupler, IEEE Photonics Technol. Lett., 27(2015), No. 22, p. 2339.

Article  Google Scholar 

M. Deng, C. Huang, D.H. Liu, W. Jin, and T. Zhu, All fiber magnetic field sensor with ferrofluid-filled tapered microstructured optical fiber interferometer, Opt. Express, 23(2015), No. 16, p. 20668.

Article  CAS  Google Scholar 

Y. Grosu, A. Faik, I. Ortega-Fernández, and B. D’Aguanno, Natural magnetite for thermal energy storage: Excellent thermophysical properties, reversible latent heat transition and controlled thermal conductivity, Sol. Energy Mater. Sol. Cells, 161(2017), p. 170.

Article  CAS  Google Scholar 

X.S. Meng, X.Y. Qiu, J.W. Zhao, et al., Synthesis of ferrofluids using a chemically induced transition method and their characterization, Colloid Polym. Sci., 297(2019), No. 2, p. 297.

Article  CAS  Google Scholar 

M.E.F. Brollo, P.H. Flores, L. Gutiérrez, C. Johansson, D.F. Barber, and M.D.P. Morales, Magnetic properties of nanoparticles as a function of their spatial distribution on liposomes and cells, Phys. Chem. Chem. Phys., 20(2018), No. 26, p. 17829.

Article  Google Scholar 

L.F. Hakim, J.L. Portman, M.D. Casper, and A.W. Weimer, Aggregation behavior of nanoparticles in fluidized beds, Powder Technol., 160(2005), No. 3, p. 149.

Article  CAS  Google Scholar 

A. Taufiq, F.N. Ikasari, N. Hidayat, et al., Dependence of PEO content in the preparation of Fe3O4/PEO/TMAH ferrofluids and their antibacterial activity, J. Polym. Res., 27(2020), No. 5, art. No. 117.

R.M. Ahmed, M. Fadel, M.S. Hanafy, and M.A. Ibrahim, Characterization and dielectric properties of magnetic nanoparticles (ferrofluid) conjugated with chemotherapy drug for medical application, IOSR J. Appl. Phys., 6(2014), No. 1, p. 38.

Article  Google Scholar 

S. Rani and G.D. Varma, Superparamagnetism and metamagnetic transition in Fe3O4 nanoparticles synthesized via co-precipitation method at different pH, Physica B, 472(2015), p. 66.

Article  CAS  Google Scholar 

A. Samavati and A.F. Ismail, Antibacterial properties of copper-substituted cobalt ferrite nanoparticles synthesized by co-precipitation method, Particuology, 30(2017), p. 158.

Article  CAS  Google Scholar 

M.A. Ansari, A. Baykal, S. Asiri, and S. Rehman, Synthesis and characterization of antibacterial activity of spinel chromium-substituted copper ferrite nanoparticles for biomedical application, J. Inorg. Organomet. Polym. Mater., 28(2018), No. 6, p. 2316.

Article  CAS  Google Scholar 

M.A. Ansari, S. Akhtar, M.A. Rauf, et al., Sol–gel synthesis of Dy-substituted Ni0.4Cu0.2Zn0.4(Fe2−xDyx)O4 nano spinel ferrites and evaluation of their antibacterial, antifungal, antibiofilm and anticancer potentialities for biomedical application, Int. J. Nanomed., 16(2021), p. 5633.

Article  Google Scholar 

C.W. Wang and C.J. Liang, Oxidative degradation of TMAH solution with UV persulfate activation, Chem. Eng. J., 254(2014), p. 472.

Article  CAS  Google Scholar 

Y.J. Fan, P.D. Han, P. Liang, Y.P. Xing, Z. Ye, and S.X. Hu, Differences in etching characteristics of TMAH and KOH on preparing inverted pyramids for silicon solar cells, Appl. Surf. Sci., 264(2013), p. 761.

Article  CAS  Google Scholar 

B. Babukutty, N. Kalarikkal, and S.S. Nair, Studies on structural, optical and magnetic properties of cobalt substituted magnetite fluids (CoxFe1−xFe2O4), Mater. Res. Express, 4(2017), No. 3, art. No. 035906.

F. Qureshi, M. Nawaz, M.A. Ansari, et al., Synthesis of M-Ag3PO4, (M = Se, Ag, Ta) nanoparticles and their antibacterial and cytotoxicity study, Int. J. Mol. Sci., 23(2022), No. 19, art. No. 11403.

J. Giri, P. Pradhan, V. Somani, et al., Synthesis and characterizations of water-based ferrofluids of substituted ferrites[Fe1−xBxFe2O4, B = Mn, Co (x = 0–1)] for biomedical applications, J. Magn. Magn. Mater., 320(2008), No. 5, p. 724.

Article  CAS  Google Scholar 

R.V. Upadhyay, K.J. Davies, S. Wells, and S.W. Charles, Preparation and characterization of ultra-fine MnFe2O4 and MnxFe1−xFe2O4 spinel systems: I. particles, J. Magn. Magn. Mater., 132(1994), No. 1–3, p. 249.

Article  CAS  Google Scholar 

H. Hamad, M.A. El-Latif, A.E.H. Kashyout, W. Sadik, and M. Feteha, Synthesis and characterization of core–shell–shell magnetic (CoFe2O4–SiO2–TiO2) nanocomposites and TiO2 nanoparticles for the evaluation of photocatalytic activity under UV and visible irradiation, New J. Chem., 39(2015), No. 4, p. 3116.

Article  CAS  Google Scholar 

M. Ma, Y. Zhang, W. Yu, H.Y. Shen, H.Q. Zhang, and N. Gu, Preparation and characterization of magnetite nanoparticles coated by amino silane, Colloids Surf. A, 212(2003), No. 2–3, p. 219.

Article  CAS  Google Scholar 

R. Govindasamy, M. Govindarasu, S.S. Alharthi, et al., Sustainable green synthesis of yttrium oxide (Y2O3) nanoparticles using Lantana camara leaf extracts: Physicochemical characterization, photocatalytic degradation, antibacterial, and anticancer potency, Nanomaterials, 12(2022), No. 14, art. No. 2393.

A.R.O. Rodrigues, J.M.F. Ramos, I.T. Gomes, et al., Magnetoliposomes based on manganese ferrite nanoparticles as nanocarriers for antitumor drugs, RSC Adv., 6(2016), No. 21, p. 17302.

Article  CAS  Google Scholar 

M. Matzapetakis, N. Karligiano, A. Bino, et al., Manganese citrate chemistry: Syntheses, spectroscopic studies, and structural characterizations of novel mononuclear, water-soluble manganese citrate complexes, Inorg. Chem., 39(2000), No. 18, p. 4044.

Article  CAS  Google Scholar 

F. Aguado, F. Rodriguez, and P. Núñez, Pressure-induced Jahn-Teller suppression and simultaneous high-spin to low-spin transition in the layered perovskite CsMnF4, Phys. Rev. B, 76(2007), No. 9, art. No. 094417.

M.Y. Rafique, L.Q. Pan, Q.U.A. Javed, et al., Growth of monodisperse nanospheres of MnFe2O4 with enhanced magnetic and optical properties, Chin. Phys. B, 22(2013), No. 10, art. No. 107101.

M.A. Ansari and S.M.M. Asiri, Green synthesis, antimicrobial, antibiofilm and antitumor activities of superparamagnetic γ-Fe2O3 NPs and their molecular docking study with cell wall mannoproteins and peptidoglycan, Int. J. Biol. Macromol., 171(2021), p. 44.

Article  CAS  Google Scholar 

N. Rajkumar, D. Umamahaeswari, and K. Ramachandran, Photoacoustics and magnetic studies of Fe3O4 nanoparticles, Int. J. Nanosci., 9(2010), No. 3, p. 243.

Article  CAS  Google Scholar 

D. Gherca, A. Pui, V. Nica, O. Caltun, and N. Cornei, Eco-environmental synthesis and characterization of nanophase powders of Co, Mg, Mn and Ni ferrites, Ceram. Int., 40(2014), No. 7, p. 9599.

Article  CAS  Google Scholar 

N. Tran, A. Mir, D. Mallik, A. Sinha, S. Nayar, and T.J. Webster, Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus, Int. J. Nanomed., 5(2010), p. 277.

CAS  Google Scholar 

N. Sanpo, C.C. Berndt, C.E. Wen, and J. Wang, Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications, Acta Biomater., 9(2013), No. 3, p. 5830.

Article  CAS  Google Scholar 

R.K. Dutta, B.P. Nenavathu, M.K. Gangishetty, and A.R. Reddy, Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation, Colloids Surf. B, 94(2012), p. 143.

Article  CAS  Google Scholar 

L.L. Zhang, Y.H. Jiang, Y.L. Ding, M. Povey, and D. York, Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids), J. Nanopart. Res., 9(2007), No. 3, p. 479.

Article  Google Scholar 

M. Kooti, P. Kharazi, and H. Motamedi, Preparation, characterization, and antibacterial activity of CoFe2O4/polyaniline/Ag nanocomposite, J. Taiwan Inst. Chem. Eng., 45(2014), No. 5, p. 2698.

Article  CAS  Google Scholar 

D. Touati, Iron and oxidative stress in bacteria, Arch. Biochem. Biophys., 373(2000), No. 1, p. 1.

Article  CAS  Google Scholar 

A. Taufiq, R.E. Saputro, H. Susanto, et al., Synthesis of Fe3O4/Ag nanohybrid ferrofluids and their applications as antimicrobial and antifibrotic agents, Heliyon, 6(2020), No. 12, art. No. e05813.

A. Taufiq, R.E. Saputro, D. Yuliantika, et al., Excellent antimicrobial performance of Co-doped magnetite double-layered ferrofluids fabricated from natural sand, J. King Saud Univ. Sci., 32(2020), No. 7, p. 3032.

Article  Google Scholar 

A. Taufiq, D. Yuliantika, S. Sunaryono, et al., Hierarchical structure and magnetic behavior of Zn-doped magnetite aqueous ferrofluids prepared from natural sand for antibacterial agents, An. Acad. Bras. Ciênc., 93(2021), No. 4, art. No. e20200774.

K. Elayakumar, A. Dinesh, A. Manikandan, et al., Structural, morphological, enhanced magnetic properties and antibacterial bio-medical activity of rare earth element (REE) cerium (Ce3+) doped CoFe2O4 nanopartieles, J. Magn. Magn. Mater., 476(2019), p. 157.

Article  CAS  Google Scholar 

O. Cervantes, N. Casillas, P. Knauth, et al., An easily prepared ferrofluid with high power absorption density and low cytotoxicity for biomedical applications, Mater. Chem. Phys., 245(2020), art. No. 122752.

留言 (0)

沒有登入
gif