Emerging applications of phage therapy and fecal virome transplantation for treatment of Clostridioides difficile infection: challenges and perspectives

Smits WK, Lyras D, Lacy DB, Wilcox MH, Kuijper EJ. Clostridium difficile infection. Nat Rev Dis Primers. 2016;2:16020. https://doi.org/10.1038/nrdp.2016.20.

Article  PubMed  PubMed Central  Google Scholar 

Kelly CR, Fischer M, Allegretti JR, LaPlante K, Stewart DB, Limketkai BN, et al. ACG clinical guidelines: prevention, diagnosis, and treatment of Clostridioides difficile infections. Am J Gastroenterol. 2021;116(6):1124–47. https://doi.org/10.14309/ajg.0000000000001278.

Article  CAS  PubMed  Google Scholar 

Chandrasekaran R, Lacy DB. The role of toxins in Clostridium difficile infection. FEMS Microbiol Rev. 2017;41(6):723–50. https://doi.org/10.1093/femsre/fux048.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abou Chakra CN, Pepin J, Sirard S, Valiquette L. Risk factors for recurrence, complications and mortality in Clostridium difficile infection: a systematic review. PLoS ONE. 2014;9(6):e98400. https://doi.org/10.1371/journal.pone.0098400.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Azimirad M, Noori M, Raeisi H, Yadegar A, Shahrokh S, Asadzadeh Aghdaei H, et al. How does covid-19 pandemic impact on incidence of Clostridioides difficile infection and exacerbation of its gastrointestinal symptoms? Front Med (Lausanne). 2021;8:775063. https://doi.org/10.3389/fmed.2021.775063.

Article  PubMed  Google Scholar 

Bouza E. Consequences of Clostridium difficile infection: understanding the healthcare burden. Clin Microbiol Infect. 2012;18:5–12. https://doi.org/10.1111/1469-0691.12064.

Article  PubMed  Google Scholar 

Salavert M, Cobo J, Pascual Á, Aragón B, Maratia S, Jiang Y, et al. Cost-effectiveness analysis of bezlotoxumab added to standard of care versus standard of care alone for the prevention of recurrent Clostridium difficile infection in high-risk patients in spain. Adv Ther. 2018;35(11):1920–34. https://doi.org/10.1007/s12325-018-0813-y.

Article  PubMed  PubMed Central  Google Scholar 

Raeisi H, Azimirad M, Asadzadeh Aghdaei H, Yadegar A, Zali MR. Rapid-format recombinant antibody-based methods for the diagnosis of Clostridioides difficile infection: recent advances and perspectives. Front Microbiol. 2022;13:1043214. https://doi.org/10.3389/fmicb.2022.1043214.

Article  PubMed  PubMed Central  Google Scholar 

Crowther GS, Wilcox MH. Antibiotic therapy and Clostridium difficile infection-primum non nocere-first do no harm. Infect Drug Resist. 2015;8:333–7. https://doi.org/10.2147/idr.S87224.

Article  PubMed  PubMed Central  Google Scholar 

Tay HL, Chow A, Ng TM, Lye DC. Risk factors and treatment outcomes of severe Clostridioides difficile infection in Singapore. Sci Rep. 2019;9(1):13440. https://doi.org/10.1038/s41598-019-49794-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raeisi H, Azimirad M, Nabavi-Rad A, Asadzadeh Aghdaei H, Yadegar A, Zali MR. Application of recombinant antibodies for treatment of Clostridioides difficile infection: current status and future perspective. Front Immunol. 2022;13:972930. https://doi.org/10.3389/fimmu.2022.972930.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mullish BH, Quraishi MN, Segal JP, McCune VL, Baxter M, Marsden GL, et al. The use of faecal microbiota transplant as treatment for recurrent or refractory Clostridium difficile infection and other potential indications: joint british society of gastroenterology (BSG) and Healthcare infection Society (HIS) guidelines. Gut. 2018;67(11):1920–41. https://doi.org/10.1136/gutjnl-2018-316818.

Article  PubMed  Google Scholar 

Draper LA, Ryan FJ, Dalmasso M, Casey PG, McCann A, Velayudhan V, et al. Autochthonous faecal viral transfer (FVT) impacts the murine microbiome after antibiotic perturbation. BMC Biol. 2020;18(1):173. https://doi.org/10.1186/s12915-020-00906-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moelling K, Broecker F, Willy C. A wake-up call: we need phage therapy now. Viruses. 2018;10:12. https://doi.org/10.3390/v10120688.

Article  CAS  Google Scholar 

Azimirad M, Jo Y, Kim MS, Jeong M, Shahrokh S, Asadzadeh Aghdaei H, et al. Alterations and prediction of functional profiles of gut microbiota after fecal microbiota transplantation for iranian recurrent Clostridioides difficile infection with underlying inflammatory bowel disease: a pilot study. J Inflamm Res. 2022;15:105–16. https://doi.org/10.2147/jir.S338212.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho S, Spencer E, Hirten R, Grinspan A, Dubinsky MC. Fecal microbiota transplant for recurrent Clostridium difficile infection in pediatric inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2019;68(3):343–7. https://doi.org/10.1097/mpg.0000000000002172.

Article  CAS  PubMed  Google Scholar 

Zuo T, Wong SH, Lam K, Lui R, Cheung K, Tang W, et al. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut. 2018;67(4):634–43. https://doi.org/10.1136/gutjnl-2017-313952.

Article  CAS  PubMed  Google Scholar 

Ott SJ, Waetzig GH, Rehman A, Moltzau-Anderson J, Bharti R, Grasis JA, et al. Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterology. 2017;152(4):799–811e7. https://doi.org/10.1053/j.gastro.2016.11.010.

Article  PubMed  Google Scholar 

Rasmussen TS, Mentzel CMJ, Kot W, Castro-Mejía JL, Zuffa S, Swann JR, et al. Faecal virome transplantation decreases symptoms of type 2 diabetes and obesity in a murine model. Gut. 2020;69(12):2122–30. https://doi.org/10.1136/gutjnl-2019-320005.

Article  CAS  PubMed  Google Scholar 

Harada LK, Silva EC, Campos WF, Del Fiol FS, Vila M, Dąbrowska K, et al. Biotechnological applications of bacteriophages: state of the art. Microbiol Res. 2018;212–213:38–58. https://doi.org/10.1016/j.micres.2018.04.007.

Article  CAS  PubMed  Google Scholar 

Kasman LM, Porter LD. Bacteriophages. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2022,StatPearls Publishing LLC.; 2022.

Salmond GP, Fineran PC. A century of the phage: past, present and future. Nat Rev Microbiol. 2015;13(12):777–86. https://doi.org/10.1038/nrmicro3564.

Article  CAS  PubMed  Google Scholar 

Mavrich TN, Hatfull GF. Bacteriophage evolution differs by host, lifestyle and genome. Nat Microbiol. 2017;2:17112. https://doi.org/10.1038/nmicrobiol.2017.112.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lima MIS, Capparelli FE, Dias Oliveira JDD, Fujimura PT, Moraes E, Araujo ECB, et al. Biotechnological and immunological platforms based on pgl-i carbohydrate-like peptide of Mycobacterium leprae for antibodies detection among leprosy clinical forms. Front Microbiol. 2020;11:429. https://doi.org/10.3389/fmicb.2020.00429.

Article  PubMed  PubMed Central  Google Scholar 

Moura de Sousa JA, Pfeifer E, Touchon M, Rocha EPC. Causes and consequences of bacteriophage diversification via genetic exchanges across lifestyles and bacterial taxa. Mol Biol Evol. 2021;38(6):2497–512. https://doi.org/10.1093/molbev/msab044.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adriaenssens EM, Sullivan MB, Knezevic P, van Zyl LJ, Sarkar BL, Dutilh BE, et al. Taxonomy of prokaryotic viruses: 2018–2019 update from the ICTV bacterial and archaeal viruses Subcommittee. Arch Virol. 2020;165(5):1253–60. https://doi.org/10.1007/s00705-020-04577-8.

Article  CAS  PubMed  Google Scholar 

De Sordi L, Lourenço M, Debarbieux L. The battle within: interactions of bacteriophages and bacteria in the gastrointestinal tract. cell host microbe. 2019;25(2):210–8. https://doi.org/10.1016/j.chom.2019.01.018.

Article  CAS  PubMed  Google Scholar 

Hobbs Z, Abedon ST. Diversity of phage infection types and associated; terminology: the problem with ‘lytic or lysogenic.’ FEMS Microbiol Lett. 2016;363:7. https://doi.org/10.1093/femsle/fnw047.

Article  CAS  Google Scholar 

Zhang M, Zhang T, Yu M, Chen YL, Jin M. The life cycle transitions of temperate phages: regulating factors and potential ecological implications. Viruses. 2022;14:9. https://doi.org/10.3390/v14091904.

Article  CAS  Google Scholar 

Federici S, Nobs SP, Elinav E. Phages and their potential to modulate the microbiome and immunity. Cell Mol Immunol. 2021;18(4):889–904. https://doi.org/10.1038/s41423-020-00532-4.

Article  CAS  PubMed  Google Scholar 

Sausset R, Petit MA, Gaboriau-Routhiau V, De Paepe M. New insights into intestinal phages. Mucosal Immunol. 2020;13(2):205–15. https://doi.org/10.1038/s41385-019-0250-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hampton HG, Watson BNJ, Fineran PC. The arms race between bacteria and their phage foes. Nature. 2020;577(7790):327–36. https://doi.org/10.1038/s41586-019-1894-8.

Article  CAS  PubMed  Google Scholar 

Filipiak M, Łoś JM, Łoś M. Efficiency of induction of shiga-toxin lambdoid prophages in Escherichia coli due to oxidative and antibiotic stress depends on the combination of prophage and the bacterial strain. J Appl Genet. 2020;61(1):131–40. https://doi.org/10.1007/s13353-019-00525-8.

Article  CAS  PubMed  Google Scholar 

Jończyk-Matysiak E, Weber-Dąbrowska B, Owczarek B, Międzybrodzki R, Łusiak-Szelachowska M, Łodej N, et al. Phage-phagocyte interactions and their implications for phage application as therapeutics. Viruses. 2017;9:6.

Chatterjee A, Duerkop BA. Sugar and fatty acids ack-celerate prophage induction. Cell Host Microbe. 2019;25(2):175–6. https://doi.org/10.1016/j.chom.2019.01.012.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif