Nanostructured biosensing platforms for the detection of food- and water-borne pathogenic Escherichia coli

Fetsch A, Johler S. Staphylococcus aureus as a foodborne pathogen. Curr Clin Microbiol Rep. 2018;5(2):88–96. https://doi.org/10.1007/s40588-018-0094-x.

Article  Google Scholar 

Ahmad-Mansour N, Loubet P, Pouget C, Dunyach-Remy C, Sotto A, Lavigne J-P, Molle V. Staphylococcus aureus toxins: an update on their pathogenic properties and potential treatments. Toxins. 2021;13(10):677. https://doi.org/10.3390/toxins13100677.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martinez-Medina M. Special issue: Pathogenic Escherichia coli: infections and therapies. Antibiotics. 2021;10(2):112. https://doi.org/10.3390/antibiotics10020112.

Article  PubMed  PubMed Central  Google Scholar 

Church NA, McKillip JL. Antibiotic resistance crisis: challenges and imperatives. Biologia. 2021;76(5):1535–50. https://doi.org/10.1007/s11756-021-00697-x.

Article  CAS  Google Scholar 

Terreni M, Taccani M, Pregnolato M. New antibiotics for multidrug-resistant bacterial strains: latest research developments and future perspectives. Molecules. 2021;26(9):2671. https://doi.org/10.3390/molecules26092671.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petrucci S, Costa C, Broyles D, Dikici E, Daunert S, Deo S. On-site detection of food and waterborne bacteria - current technologies, challenges, and future directions. Trends Food Sci Technol. 2021;115:409–21. https://doi.org/10.1016/j.tifs.2021.06.054.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reta N, Saint CP, Michelmore A, Prieto-Simon B, Voelcker NH. Nanostructured electrochemical biosensors for label-free detection of water- and food-borne pathogens. ACS Appl Mater Inter. 2018;10(7):6055–72. https://doi.org/10.1021/acsami.7b13943.

Article  CAS  Google Scholar 

Nnachi RC, Sui N, Ke B, Luo Z, Bhalla N, He D, Yang Z. Biosensors for rapid detection of bacterial pathogens in water, food and environment. Environ Inter. 2022;166:107357. https://doi.org/10.1016/j.envint.2022.107357.

Article  CAS  Google Scholar 

Kim J-H, Oh S-W. Rapid detection of E. coli O157:H7 by a novel access with combination of improved sample preparation and real-time PCR. Food Sci Biotechnol. 2020;29(8):1149–57. https://doi.org/10.1007/s10068-020-00758-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petrucci S, Costa C, Broyles D, Kaur A, Dikici E, Daunert S, Deo SK. Monitoring pathogenic viable E. coli O157:H7 in food matrices based on the detection of RNA using isothermal amplification and a paper-based platform. Anal Chem. 2022;94(5):2485–92. https://doi.org/10.1021/acs.analchem.1c04305.

Article  CAS  PubMed  Google Scholar 

Rani A, Ravindran VB, Surapaneni A, Mantri N, Ball AS. Review: Trends in point-of-care diagnosis for Escherichia coli O157:H7 in food and water. Inter J Food Microbiol. 2021;349:109233. https://doi.org/10.1016/j.ijfoodmicro.2021.109233.

Article  CAS  Google Scholar 

Kirsch J, Siltanen C, Zhou Q, Revzin A, Simonian A. Biosensor technology: recent advances in threat agent detection and medicine. Chem Soc Rev. 2013;42(22):8733–68. https://doi.org/10.1039/C3CS60141B.

Article  CAS  PubMed  Google Scholar 

Janik-Karpinska E, Ceremuga M, Niemcewicz M, Podogrocki M, Stela M, Cichon N, Bijak M. Immunosensors - the future of pathogen real-time detection. Sensors. 2022;22(24):9757. https://doi.org/10.3390/s22249757.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leva-Bueno J, Peyman SA, Millner PA. A review on impedimetric immunosensors for pathogen and biomarker detection. Med Microbiol Immunol. 2020;209(3):343–62. https://doi.org/10.1007/s00430-020-00668-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hwang J, Ejsmont A, Freund R, Goscianska J, Schmidt BVKJ, Wuttke S. Controlling the morphology of metal-organic frameworks and porous carbon materials: metal oxides as primary architecture-directing agents. Chem Soc Rev. 2020;49(11):3348–422. https://doi.org/10.1039/C9CS00871C.

Article  CAS  PubMed  Google Scholar 

Zhong M, Yang L, Yang H, Cheng C, Deng W, Tan Y, Xie Q, Yao S. An electrochemical immunobiosensor for ultrasensitive detection of Escherichia coli O157:H7 using CdS quantum dots-encapsulated metal-organic frameworks as signal-amplifying tags. Biosens Bioelectron. 2019;126:493–500. https://doi.org/10.1016/j.bios.2018.11.001.

Article  CAS  PubMed  Google Scholar 

Benserhir Y, Salaün AC, Geneste F, Pichon L, Jolivet-Gougeon A. Recent developments for the detection of escherichia coli biosensors based on nano-objects-a review. IEEE Sens J. 2022;22(10):9177–88. https://doi.org/10.1109/JSEN.2022.3160695.

Article  CAS  Google Scholar 

Razmi N, Hasanzadeh M, Willander M, Nur O. Recent progress on the electrochemical biosensing of Escherichia coli O157:H7: material and methods overview. Biosensors. 2020;10(5):54. https://doi.org/10.3390/bios10050054.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chakraborty J, Chaudhary AA, Khan S-U-D, Rudayni HA, Rahaman SM, Sarkar H. CRISPR/Cas-based biosensor as a new age detection method for pathogenic bacteria. ACS Omega. 2022;7(44):39562–73. https://doi.org/10.1021/acsomega.2c04513.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sohrabi H, Majidi MR, Khaki P, Jahanban-Esfahlan A, de la Guardia M, Mokhtarzadeh A. State of the art: lateral flow assays toward the point-of-care foodborne pathogenic bacteria detection in food samples. Compr Rev Food Sci Food Saf. 2022;21(2):1868–912. https://doi.org/10.1111/1541-4337.12913.

Article  PubMed  Google Scholar 

Bai Z, Xu X, Wang C, Wang T, Sun C, Liu S, Li D. A comprehensive review of detection methods for Escherichia coli O157:H7. TrAC Trends Anal Chem. 2022;152:116646. https://doi.org/10.1016/j.trac.2022.116646.

Article  CAS  Google Scholar 

Petronella F, De Biase D, Zaccagnini F, Verrina V, Lim S-I, Jeong K-U, Miglietta S, Petrozza V, Scognamiglio V, Godman NP, Evans DR, McConney M, De Sio L. Label-free and reusable antibody-functionalized gold nanorod arrays for the rapid detection of Escherichia coli cells in a water dispersion. Environ Sci Nano. 2022;9(9):3343–60. https://doi.org/10.1039/D2EN00564F.

Article  CAS  Google Scholar 

Liu M, Zhang Q, Brennan JD, Li Y. Graphene-DNAzyme-based fluorescent biosensor for Escherichia coli detection. MRS Commun. 2018;8(3):687–94. https://doi.org/10.1557/mrc.2018.97.

Article  CAS  Google Scholar 

Saad SM, Abdullah J, Rashid SA, Fen YW, Salam F, Yih LH. A fluorescence quenching based gene assay for Escherichia coli O157:H7 using graphene quantum dots and gold nanoparticles. Microchim Acta. 2019;186(12):804. https://doi.org/10.1007/s00604-019-3913-8.

Article  CAS  Google Scholar 

You S-M, Luo K, Jung J-Y, Jeong K-B, Lee E-S, Oh M-H, Kim Y-R. Gold nanoparticle-coated starch magnetic beads for the separation, concentration, and SERS-based detection of E. coli O157:H7. ACS Appl Mater Inter. 2020;12(16):18292–300. https://doi.org/10.1021/acsami.0c00418.

Article  CAS  Google Scholar 

Ramanujam A, Neyhouse B, Keogh RA, Muthuvel M, Carroll RK, Botte GG. Rapid electrochemical detection of Escherichia coli using nickel oxidation reaction on a rotating disk electrode. Chem Eng J. 2021;411:128453. https://doi.org/10.1016/j.cej.2021.128453.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu W, Liu Z, Zhang Y, Li S, Zhang Y, Yang X, Zhang J, Yuan L. Specialty optical fibers and 2D materials for sensitivity enhancement of fiber optic SPR sensors: a review. Opti Laser Technol. 2022;152:108167. https://doi.org/10.1016/j.optlastec.2022.108167.

Article  CAS  Google Scholar 

Kim Y, Gonzales J, Zheng Y. Sensitivity-enhancing strategies in optical biosensing. Small. 2021;17(4):2004988. https://doi.org/10.1002/smll.202004988.

Article  CAS  Google Scholar 

Morales-Narváez E, Merkoçi A. Graphene oxide as an optical biosensing platform: a progress report. Adv Mater. 2019;31(6):1805043. https://doi.org/10.1002/adma.201805043.

Article  CAS  Google Scholar 

Mourdikoudis S, Pallares RM, Thanh NTK. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale. 2018;10(27):12871–934. https://doi.org/10.1039/C8NR02278J.

Article  CAS  PubMed  Google Scholar 

Neubrech F, Duan X, Liu N. Dynamic plasmonic color generation enabled by functional materials. Sci Adv. 2020;6(36):eabc2709. https://doi.org/10.1126/sciadv.abc2709.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sai-Anand G, Sivanesan A, Benzigar MR, Singh G, Gopalan A-I, Baskar AV, Ilbeygi H, Ramadass K, Kambala V, Vinu A. Recent progress on the sensing of pathogenic bacteria using advanced nanostructures. Bull Chem Soc Jpn. 2019;92(1):216–44. https://doi.org/10.1246/bcsj.20180280.

Article  CAS  Google Scholar 

Mocan T, Matea CT, Pop T, Mosteanu O, Buzoianu AD, Puia C, Iancu C, Mocan L. Development of nanoparticle-based optical sensors for pathogenic bacterial detection. J Nanobiotechnol. 2017;15(1):25. https://doi.org/10.1186/s12951-017-0260-y.

Article  CAS  Google Scholar 

Liu J, Jalali M, Mahshid S, Wachsmann-Hogiu S. Are plasmonic optical biosensors ready for use in point-of-need applications? Analyst. 2020;145(2):364–84. https://doi.org/10.1039/C9AN02149C.

Article  CAS  PubMed  Google Scholar 

Wang L, Hasanzadeh Kafshgari M, Meunier M. Optical properties and applications of plasmonic - metal nanoparticles. Adv Funct Mater. 2020;30(51):2005400. https://doi.org/10.1002/adfm.202005400.

Article  CAS  Google Scholar 

D’Agata R, Bellassai N, Jungbluth V, Spoto G. Recent advances in antifouling materials for surface plasmon reso

留言 (0)

沒有登入
gif