Molecular basis of the TRAP complex function in ER protein biogenesis

Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

Article  PubMed  Google Scholar 

Nyathi, Y., Wilkinson, B. M. & Pool, M. R. Co-translational targeting and translocation of proteins to the endoplasmic reticulum. Biochim. Biophys. Acta 1833, 2392–2402 (2013).

Article  CAS  PubMed  Google Scholar 

Hegde, R. S. & Keenan, R. J. The mechanisms of integral membrane protein biogenesis. Nat. Rev. Mol. Cell Biol. 23, 107–124 (2022).

Article  CAS  PubMed  Google Scholar 

Rapoport, T. A., Li, L. & Park, E. Structural and mechanistic insights into protein translocation. Annu. Rev. Cell Dev. Biol. 33, 369–390 (2017).

Article  CAS  PubMed  Google Scholar 

Zimmer, J., Nam, Y. & Rapoport, T. A. Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature 455, 936–943 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liaci, A. M. & Förster, F. Take me home, protein roads: structural insights into signal peptide interactions during ER translocation. Int. J. Mol. Sci. 22, 11871 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pfeffer, S. et al. Dissecting the molecular organization of the translocon-associated protein complex. Nat. Commun. 8, 14516 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matlack, K. E. S. & Walter, P. The 70 carboxyl-terminal amino acids of nascent secretory proteins are protected from proteolysis by the ribosome and the protein translocation apparatus of the endoplasmic reticulum membrane. J. Biol. Chem. 270, 6170–6180 (1995).

Article  CAS  PubMed  Google Scholar 

Görlich, D., Prehn, S., Hartmann, E., Kalies, K. U. & Rapoport, T. A. A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation. Cell 71, 489–503 (1992).

Article  PubMed  Google Scholar 

Fons, R. D., Bogert, B. A. & Hegde, R. S. Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane. J. Cell Biol. 160, 529–539 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hartmann, E. et al. A tetrameric complex of membrane proteins in the endoplasmic reticulum. Eur. J. Biochem. 214, 375–381 (1993).

Article  CAS  PubMed  Google Scholar 

Nguyen, D. et al. Proteomics reveals signal peptide features determining the client specificity in human TRAP-dependent ER protein import. Nat. Commun. 9, 3765 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Li, X. et al. Requirement for translocon-associated protein (TRAP) α in insulin biogenesis. Sci. Adv. 5, eaax0292 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kriegler, T., Kiburg, G. & Hessa, T. Translocon-associated protein complex (TRAP) is crucial for co-translational translocation of pre-proinsulin. J. Mol. Biol. 432, 166694 (2020).

Article  CAS  PubMed  Google Scholar 

Webb, G. C., Akbar, M. S., Zhao, C. & Steiner, D. F. Expression profiling of pancreatic β cells: glucose regulation of secretory and metabolic pathway genes. Proc. Natl Acad. Sci. USA 97, 5773–5778 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mahajan, A. et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat. Genet. 46, 234–244 (2014).

Article  CAS  PubMed  Google Scholar 

Mesbah, K., Camus, A., Babinet, C. & Barra, J. Mutation in the Trapalpha/Ssr1 gene, encoding translocon-associated protein alpha, results in outflow tract morphogenetic defects. Mol. Cell. Biol. 26, 7760–7771 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Losfeld, M. E. et al. A new congenital disorder of glycosylation caused by a mutation in SSR4, the signal sequence receptor 4 protein of the TRAP complex. Hum. Mol. Genet. 23, 1602–1605 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Li, D. H. et al. The role of XTRAP-gamma in Xenopus pronephros development. Int. J. Dev. Biol. 49, 401–408 (2004).

Article  Google Scholar 

Yamaguchi, Y. L. et al. Translocon-associated protein subunit Trap-γ/Ssr3 is required for vascular network formation in the mouse placenta. Dev. Dyn. 240, 394–403 (2011).

Article  CAS  PubMed  Google Scholar 

Jomaa, A. et al. Molecular mechanism of cargo recognition and handover by the mammalian signal recognition particle. Cell Rep. 36, 109350 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walter, P. & Blobel, G. Preparation of microsomal membranes for cotranslational protein translocation. Methods Enzymol. 96, 84–93 (1983).

Article  CAS  PubMed  Google Scholar 

Ramírez, A. S., Kowal, J. & Locher, K. P. Cryo-electron microscopy structures of human oligosaccharyltransferase complexes OST-A and OST-B. Science 366, 1372–1375 (2019).

Article  PubMed  Google Scholar 

Braunger, K. et al. Structural basis for coupling protein transport and N-glycosylation at the mammalian endoplasmic reticulum. Science 360, 215–219 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Voorhees, R. M., Fernández, I. S., Scheres, S. H. W. & Hegde, R. S. Structure of the mammalian ribosome-Sec61 complex to 3.4 Å resolution. Cell 157, 1632–1643 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pfeffer, S. et al. Structure of the native Sec61 protein-conducting channel. Nat. Commun. 6, 8403 (2015).

Article  CAS  PubMed  Google Scholar 

Ménétret, J.-F. et al. Single copies of Sec61 and TRAP associate with a nontranslating mammalian ribosome. Structure 16, 1126–1137 (2008).

Article  PubMed  PubMed Central  Google Scholar 

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).

Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jomaa, A. et al. Mechanism of signal sequence handover from NAC to SRP on ribosomes during ER-protein targeting. Science 375, 839–844 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Calfon, M. et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92–96 (2002).

Article  CAS  PubMed  Google Scholar 

Murphy, C. T. & Hu, P. J. Insulin/insulin-like growth factor signaling in C. elegans. WormBook https://doi.org/10.1895/wormbook.1.164.1 (2013).

Kramer, G., Boehringer, D., Ban, N. & Bukau, B. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat. Struct. Mol. Biol. 16, 589–597 (2009).

Article  CAS  PubMed  Google Scholar 

Pleiner, T. et al. Structural basis for membrane insertion by the human ER membrane protein complex. Science 369, 433–436 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mayer, M. P. & Bukau, B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell. Mol. Life Sci. 62, 670–684 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wild, R. et al. Structure of the yeast oligosaccharyltransferase complex gives insight into eukaryotic N-glycosylation. Science 359, 545–550 (2018).

Article  CAS  PubMed  Google Scholar 

Liaci, A. M. et al. Structure of the human signal peptidase complex reveals the determinants for signal peptide cleavage. Mol. Cell 81, 3934–3948.e11 (2021).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif