Gut microbiota in colorectal cancer development and therapy

Sender, R., Fuchs, S. & Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164, 337–340 (2016).

Article  CAS  PubMed  Google Scholar 

Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, H. J. & Wu, E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 3, 4–14 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Carding, S., Verbeke, K., Vipond, D. T., Corfe, B. M. & Owen, L. J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 26, 26191 (2015).

PubMed  Google Scholar 

Scott, A. J. et al. International Cancer Microbiome Consortium consensus statement on the role of the human microbiome in carcinogenesis. Gut 68, 1624–1632 (2019).

Article  CAS  PubMed  Google Scholar 

Dai, Z. et al. Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome 6, 70 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Feng, Q. et al. Gut microbiome development along the colorectal adenoma–carcinoma sequence. Nat. Commun. 6, 6528 (2015).

Article  CAS  PubMed  Google Scholar 

Yu, J. et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 66, 70–78 (2017).

Article  CAS  PubMed  Google Scholar 

Sobhani, I. et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS ONE 6, e16393 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, T. et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 6, 320–329 (2012).

Article  CAS  PubMed  Google Scholar 

Ahn, J. et al. Human gut microbiome and risk for colorectal cancer. J. Natl Cancer Inst. 105, 1907–1911 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeller, G. et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol. Syst. Biol. 10, 766 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Zackular, J. P., Rogers, M. A. M., Ruffin, M. T. & Schloss, P. D. The human gut microbiome as a screening tool for colorectal cancer. Cancer Prev. Res. 7, 1112–1121 (2014).

Article  CAS  Google Scholar 

Baxter, N. T., Ruffin, M. T., Rogers, M. A. M. & Schloss, P. D. Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions. Genome Med. https://doi.org/10.1186/s13073-016-0290-3 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Yazici, C. et al. Race-dependent association of sulfidogenic bacteria with colorectal cancer. Gut 66, 1983–1994 (2017).

Article  CAS  PubMed  Google Scholar 

Thomas, A. M. et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat. Med. 25, 667–678 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wirbel, J. et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. 25, 679 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yachida, S. et al. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat. Med. 25, 968 (2019).

Article  CAS  PubMed  Google Scholar 

Chen, W., Liu, F., Ling, Z., Tong, X. & Xiang, C. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS ONE 7, e39743 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kostic, A. D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14, 207–215 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Warren, R. L. et al. Co-occurrence of anaerobic bacteria in colorectal carcinomas. Microbiome 1, 16 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Zhang, Z. et al. Spatial heterogeneity and co-occurrence patterns of human mucosal-associated intestinal microbiota. ISME J. 8, 881–893 (2014).

Article  PubMed  Google Scholar 

Nakatsu, G. et al. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat. Commun. 6, 8727 (2015).

Article  CAS  PubMed  Google Scholar 

Flemer, B. et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut 66, 633–643 (2017).

Article  CAS  PubMed  Google Scholar 

Drewes, J. L. et al. High-resolution bacterial 16S rRNA gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia. NPJ Biofilms Microbiomes https://doi.org/10.1038/s41522-017-0040-3 (2017).

Article  PubMed  PubMed Central  Google Scholar 

McCoy, A. N. et al. Fusobacterium is associated with colorectal adenomas. PLoS ONE https://doi.org/10.1371/journal.pone.0053653 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Liang, J. Q. et al. A novel faecal Lachnoclostridium marker for the non-invasive diagnosis of colorectal adenoma and cancer. Gut 69, 1248–1257 (2020).

Article  CAS  PubMed  Google Scholar 

Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 15, 1016–1022 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arthur, J. C. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338, 120–123 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boleij, A. & Tjalsma, H. The itinerary of Streptococcus gallolyticus infection in patients with colonic malignant disease. Lancet Infect. Dis. 13, 719–724 (2013).

Article  PubMed  Google Scholar 

Cao, Y. et al. Commensal microbiota from patients with inflammatory bowel disease produce genotoxic metabolites. Science 378, eabm3233 (2022).

Article  CAS  PubMed  Google Scholar 

Correa, N. B., Peret Filho, L. A., Penna, F. J., Lima, F. M. & Nicoli, J. R. A randomized formula controlled trial of Bifidobacterium lactis and Streptococcus thermophilus for prevention of antibiotic-associated diarrhea in infants. J. Clin. Gastroenterol. 39, 385–389 (2005).

Article  PubMed  Google Scholar 

Horz, H. P., Meinelt, A., Houben, B. & Conrads, G. Distribution and persistence of probiotic Streptococcus salivarius K12 in the human oral cavity as determined by real-time quantitative polymerase chain reaction. Oral. Microbiol. Immunol. 22, 126–130 (2007).

Article  CAS  PubMed  Google Scholar 

Roy, D., Ward, P., Vincent, D. & Mondou, F. Molecular identification of potentially probiotic lactobacilli. Curr. Microbiol. 40, 40–46 (2000).

Article  CAS  PubMed  Google Scholar 

Szajewska, H., Ruszczynski, M. & Radzikowski, A. Probiotics in the prevention of antibiotic-associated diarrhea in children: a meta-analysis of randomized controlled trials. J. Pediatr. 149, 367–372 (2006).

Article  PubMed  Google Scholar 

Pilchova, T., Pilet, M.-F., Cappelier, J.-M., Pazlarová, J. & Tresse, O. Protective effect of Carnobacterium spp. against Listeria monocytogenes during host cell invasion using in vitro HT29 model. Front. Cell. Infect. Microbiol. 6, 88 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Bullman, S. et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 358, 1443–1448 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, W. et al. Microbial community heterogeneity within colorectal neoplasia and its correlation with colorectal carcinogenesis. Gastroenterology 160, 2395–2408 (2021).

留言 (0)

沒有登入
gif