Real-time monitoring of reaction stereochemistry through single-molecule observations of chirality-induced spin selectivity

Dalko, P. I. & Moisan, L. In the golden age of organocatalysis. Angew. Chem. Int. Ed. 43, 5138–5175 (2004).

Article  CAS  Google Scholar 

Bornscheuer, U. T. et al. Engineering the third wave of biocatalysis. Nature 485, 185–194 (2012).

Article  CAS  PubMed  Google Scholar 

Hsieh, D. et al. Observation of unconventional quantum spin textures in topological insulators. Science 323, 919–922 (2009).

Article  CAS  PubMed  Google Scholar 

Hendry, E. et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 5, 783–787 (2010).

Article  CAS  PubMed  Google Scholar 

Tu, H.-F., Yang, P., Lin, Z.-H., Zheng, C. & You, S.-L. Time-dependent enantiodivergent synthesis via sequential kinetic resolution. Nat. Chem. 12, 838–844 (2020).

Article  CAS  PubMed  Google Scholar 

Yeom, J. et al. Chiromagnetic nanoparticles and gels. Science 359, 309–314 (2018).

Article  CAS  PubMed  Google Scholar 

Tang, Y. & Cohen Adam, E. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science 332, 333–336 (2011).

Article  CAS  PubMed  Google Scholar 

Banerjee-Ghosh, K. et al. Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates. Science 360, 1331–1334 (2018).

Article  CAS  PubMed  Google Scholar 

Kumar, J. et al. Detection of amyloid fibrils in Parkinson’s disease using plasmonic chirality. Proc. Natl Acad. Sci. USA 115, 3225–3230 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Steendam, R. R. E. et al. Emergence of single-molecular chirality from achiral reactants. Nat. Commun. 5, 5543 (2014).

Article  CAS  PubMed  Google Scholar 

Gohler, B. et al. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 331, 894–897 (2011).

Article  CAS  PubMed  Google Scholar 

Naaman, R., Paltiel, Y. & Waldeck, D. H. Chiral molecules and the electron spin. Nat. Rev. Chem. 3, 250–260 (2019).

Article  CAS  Google Scholar 

Kim, Y. H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).

Article  CAS  PubMed  Google Scholar 

Naaman, R., Paltiel, Y. & Waldeck, D. H. Chiral molecules and the spin selectivity effect. J. Phys. Chem. Lett. 11, 3660–3666 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aragones, A. C. et al. Measuring the spin-polarization power of a single chiral molecule. Small 13, 1602519 (2017).

Article  Google Scholar 

Naaman, R. & Waldeck, D. H. Spintronics and chirality: spin selectivity in electron transport through chiral molecules. Annu. Rev. Phys. Chem. 66, 263–281 (2015).

Article  CAS  PubMed  Google Scholar 

Al-Bustami, H. et al. Single nanoparticle magnetic spin memristor. Small 14, 1801249 (2018).

Article  Google Scholar 

Brandt, J. R., Salerno, F. & Fuchter, M. J. The added value of small-molecule chirality in technological applications. Nat. Rev. Chem. 1, 0045 (2017).

Article  CAS  Google Scholar 

Michaeli, K., Kantor-Uriel, N., Naaman, R. & Waldeck, D. H. The electron’s spin and molecular chirality—how are they related and how do they affect life processes? Chem. Soc. Rev. 45, 6478–6487 (2016).

Article  CAS  PubMed  Google Scholar 

Alwan, S. & Dubi, Y. Spinterface origin for the chirality-induced spin-selectivity effect. J. Am. Chem. Soc. 143, 14235–14241 (2021).

Article  CAS  PubMed  Google Scholar 

Ghazaryan, A., Paltiel, Y. & Lemeshko, M. Analytic model of chiral-induced spin selectivity. J. Phys. Chem. C 124, 11716–11721 (2020).

Article  CAS  Google Scholar 

Qi, D., Kenaan, A., Cui, D. & Song, J. Novel insights into the selection to electron’s spin of chiral structure. Nano Energy 52, 142–152 (2018).

Article  CAS  Google Scholar 

Dubi, Y. Spinterface chirality-induced spin selectivity effect in bio-molecules. Chem. Sci. 13, 10878–10883 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Evers, F., Korytár, R., Tewari, S. & van Ruitenbeek, J. M. Advances and challenges in single-molecule electron transport. Rev. Mod. Phys. 92, 035001 (2020).

Article  CAS  Google Scholar 

Xin, N. et al. Concepts in the design and engineering of single-molecule electronic devices. Nat. Rev. Phys. 1, 211–230 (2019).

Article  Google Scholar 

Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).

Article  CAS  PubMed  Google Scholar 

Bai, J. et al. Anti-resonance features of destructive quantum interference in single-molecule thiophene junctions achieved by electrochemical gating. Nat. Mater. 18, 364–369 (2019).

Article  CAS  PubMed  Google Scholar 

Winkelmann, C. B., Roch, N., Wernsdorfer, W., Bouchiat, V. & Balestro, F. Superconductivity in a single-C60 transistor. Nat. Phys. 5, 876–879 (2009).

Article  CAS  Google Scholar 

Kim, W. Y. & Kim, K. S. Tuning molecular orbitals in molecular electronics and spintronics. Acc. Chem. Res. 43, 111–120 (2010).

Article  CAS  PubMed  Google Scholar 

Waldrop, M. M. The chips are down for Moore’s law. Nat. News 530, 144–147 (2016).

Article  CAS  Google Scholar 

Li, Y., Yang, C. & Guo, X. Single-molecule electrical detection: a promising route toward the fundamental limits of chemistry and life science. Acc. Chem. Res. 53, 159–169 (2020).

Article  CAS  PubMed  Google Scholar 

Yang, C. et al. Single-molecule electrical spectroscopy of organocatalysis. Matter 4, 2874–2885 (2021).

Article  CAS  Google Scholar 

Yang, C. et al. Unveiling the full reaction path of the Suzuki–Miyaura cross-coupling in a single-molecule junction. Nat. Nanotechnol. 16, 1214–1223 (2021).

Article  CAS  PubMed  Google Scholar 

Chen, H. et al. Electron-catalyzed dehydrogenation in a single-molecule junction. J. Am. Chem. Soc. 143, 8476–8487 (2021).

Article  CAS  PubMed  Google Scholar 

Aragones, A. C. et al. Electrostatic catalysis of a Diels–Alder reaction. Nature 531, 88–91 (2016).

Article  CAS  PubMed  Google Scholar 

Huang, G. & Li, X. Applications of Michael addition reaction in organic synthesis. Curr. Org. Synth. 14, 568–571 (2017).

Article  CAS  Google Scholar 

Sibi, P. M. & Manyem, S. Enantioselective conjugate additions. Tetrahedron 56, 8033–8061 (2000).

Article  CAS  Google Scholar 

Yang, C. et al. Electric field–catalyzed single-molecule Diels–Alder reaction dynamics. Sci. Adv. 7, eabf0689 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gómez-Torres, E., Alonso, D. A., Gómez-Bengoa, E. & Nájera, C. Enantioselective synthesis of succinimides by Michael addition of 1,3-dicarbonyl compounds to maleimides catalyzed by a chiral bis(2-aminobenzimidazole) organocatalyst. Eur. J. Org. Chem. 2013, 1434–1440 (2013).

Article  Google Scholar 

Gersten, J., Kaasbjerg, K. & Nitzan, A. Induced spin filtering in electron transmission through chiral molecular layers adsorbed on metals with strong spin–orbit coupling. J. Chem. Phys. 139, 114111 (2013).

Article  PubMed  Google Scholar 

Xie, Z. et al. Spin specific electron conduction through DNA oligomers. Nano Lett. 11, 4652–4655 (2011).

Article  CAS  PubMed  Google Scholar 

Kondou, K. et al. Chirality-induced magnetoresistance due to thermally driven spin polarization. J. Am. Chem. Soc. 144, 7302–7307 (2022).

留言 (0)

沒有登入
gif