A prime editor mouse to model a broad spectrum of somatic mutations in vivo

Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garraway, L. A. & Lander, E. S. Lessons from the cancer genome. Cell 153, 17–37 (2013).

Article  CAS  PubMed  Google Scholar 

Hyman, D. M., Taylor, B. S. & Baselga, J. Implementing genome-driven oncology. Cell 168, 584–599 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang, M. T. et al. Accelerating discovery of functional mutant alleles in cancer. Cancer Discov. 8, 174–183 (2018).

Article  CAS  PubMed  Google Scholar 

Hong, D. S. et al. KRASG12C inhibition with sotorasib in advanced solid tumors. N. Engl. J. Med. 383, 1207–1217 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

Article  CAS  PubMed  Google Scholar 

Hill, W., Caswell, D. R. & Swanton, C. Capturing cancer evolution using genetically engineered mouse models (GEMMs). Trends Cell Biol. 31, 1007–1018 (2021).

Article  CAS  PubMed  Google Scholar 

Kersten, K., de Visser, K. E., van Miltenburg, M. H. & Jonkers, J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol. Med. 9, 137–153 (2017).

Article  CAS  PubMed  Google Scholar 

Zehir, A. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 23, 703–713 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Platt, R. J. et al. CRISPR–Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Annunziato, S. et al. In situ CRISPR–Cas9 base editing for the development of genetically engineered mouse models of breast cancer. EMBO J. 39, e102169 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han, T. et al. R-Spondin chromosome rearrangements drive Wnt-dependent tumour initiation and maintenance in the intestine. Nat. Commun. 8, 15945 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dow, L. E. et al. Inducible in vivo genome editing with CRISPR-Cas9. Nat. Biotechnol. 33, 390–394 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sánchez-Rivera, F. J. et al. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature 516, 428–431 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Winters, I. P. et al. Multiplexed in vivo homology-directed repair and tumor barcoding enables parallel quantification of Kras variant oncogenicity. Nat. Commun. 8, 2053 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Leibowitz, M. L. et al. Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nat. Genet. 53, 895–905 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blair, L. M. et al. Oncogenic context shapes the fitness landscape of tumor suppression. Preprint at bioRxiv https://doi.org/10.1101/2022.10.24.511787 (2022).

Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kurt, I. C. et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat. Biotechnol. 39, 41–46 (2021).

Article  CAS  PubMed  Google Scholar 

Koblan, L. W. et al. Efficient C·G-to-G·C base editors developed using CRISPRi screens, target-library analysis, and machine learning. Nat. Biotechnol. 39, 1414–1425 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lam, D. K. et al. Improved cytosine base editors generated from TadA variants. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01611-9 (2023).

Tong, H. et al. Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01595-6 (2023).

Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

Article  CAS  PubMed  Google Scholar 

Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, P. et al. Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nat. Commun. 12, 2121 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gainor, J. F. et al. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov. 6, 1118–1133 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gainor, J. F. et al. Patterns of metastatic spread and mechanisms of resistance to crizotinib in ROS1-positive non-small-cell lung cancer. JCO Precis. Oncol. 2017, PO.17.00063 (2017).

Kobayashi, S. et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 352, 786–792 (2005).

Article  CAS  PubMed  Google Scholar 

Chen, P. J. et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184, 5635–5652 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Canté-Barrett, K. et al. Lentiviral gene transfer into human and murine hematopoietic stem cells: size matters. BMC Res. Notes 9, 312 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Zinn, E. & Vandenberghe, L. H. Adeno-associated virus: fit to serve. Curr. Opin. Virol. 8, 90–97 (2014).

Article  PubMed  Google Scholar 

Wang, D. et al. Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum. Gene Ther. 26, 432–442 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Annunziato, S. et al. Modeling invasive lobular breast carcinoma by CRISPR/Cas9-mediated somatic genome editing of the mammary gland. Genes Dev. 30, 1470–1480 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Böck, D. et al. In vivo prime editing of a metabolic liver disease in mice. Sci. Transl. Med. 14, eabl9238 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Sánchez-Rivera, F. J. et al. Base editing sensor libraries for high-throughput engineering and functional analysis of cancer-associated single nucleotide variants. Nat. Biotechnol. 40, 862–873 (2022).

Erwood, S. et al. Saturation variant interpretation using CRISPR prime editing. Nat. Biotechnol. 40, 885–895 (2022).

Chen, L. et al. Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins. Nat. Commun. 12, 1384 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grünewald, J. et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nat. Biotechnol. 38, 861–864 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Yuan, T. et al. Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods. Nat. Commun. 12, 4902 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anzalone, A. V. et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol. 40, 731–740 (2022).

Article  CAS  PubMed  Google Scholar 

Jiang, T., Zhang, X.-O., Weng, Z. & Xue, W. Deletion and replacement of long genomic sequences using prime editing. Nat. Biotechnol. 40, 227–234 (2022).

Article  CAS 

留言 (0)

沒有登入
gif