CAR T cell-based immunotherapy and radiation therapy: potential, promises and risks

Aghajanian H, Rurik JG, Epstein JA. CAR-based therapies: opportunities for immuno-medicine beyond cancer. Nat Metab. 2022;4(2):163?9.

Sadelain M, Brentjens R, Rivière I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3(4):388?98.

Rafiq S, Hackett CS, Brentjens RJ. Engineering strategies to overcome the currentroadblocks in CAR T cell therapy. Nat Rev Clin Oncol. 2020;17(3):147?67.

Mackensen A, Müller F, Mougiakakos D, Böltz S, Wilhelm A, Aigner M et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat Med. 2022;28:2124?32.

Rurik JG, Tombácz I, Yadegari A, Méndez Fernández PO, Shewale SV, Li L et al. CAR T cells produced in vivo to treat cardiac injury. Science. 2022;375:91–6.

Wagner J, Wickman E, DeRenzo C, Gottschalk S. CAR T Cell Therapy for Solid Tumors: Bright Future or Dark Reality? Mol Ther. 2020;28:2320–39.

Safarzadeh Kozani P, Safarzadeh Kozani P, Ahmadi Najafabadi M, Yousefi F, Mirarefin SMJ, Rahbarizadeh F. Recent Advances in Solid Tumor CAR-T Cell Therapy: Driving Tumor Cells From Hero to Zero? Front Immunol. 2022;13:795164.

Karasarides M, Cogdill AP, Robbins PB, Bowden M, Burton EM, Butterfield LH et al. Hallmarks of Resistance to Immune-Checkpoint Inhibitors. Cancer Immunol Res. 2022;10:372–83.

Zhang Z, Liu X, Chen D, Yu J. Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Signal Transduct Target Ther. 2022;7:258.

Asna N, Livoff A, Batash R, Debbi R, Schaffer P, Rivkind T, et al. Radiation therapy and immunotherapy— A potential combination in cancer treatment. Curr Oncol. 2018;25:e454–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pai SI, Cesano A, Tumor Microenvironment. Lee PP, Marincola FM, editors. Physiol Behav. Volume 180. Cham: Springer International Publishing; 2020. pp. 139–48.

Google Scholar 

Touat M, Li YY, Boynton AN, Spurr LF, Iorgulescu JB, Bohrson CL et al. Mechanisms and therapeutic implications of hypermutation in gliomas. Nature. 2020; 580(7804):517–23

Wang Z, Cao YJ. Adoptive cell therapy targeting neoantigens: a Frontier for Cancer Research. Front Immunol Frontiers Media SA. 2020;11:176.

Article  Google Scholar 

Chruściel E, Urban-Wójciuk Z, Arcimowicz Ł, Kurkowiak M, Kowalski J, Gliwiński M, et al. Adoptive cell therapy—harnessing antigen-specific t cells to target solid tumours. Cancers (Basel). 2020;12:1–30.

Article  Google Scholar 

Lhuillier C, Rudqvist NP, Elemento O, Formenti SC, Demaria S. Radiation therapy and anti-tumor immunity: exposing immunogenic mutations to the immune system. Genome Med Genome Medicine. 2019;11:1–10.

CAS  Google Scholar 

Seyedin SN, Schoenhals JE, Lee DA, Cortez MA, Niknam S, Tang C, et al. Strategies for combining immunotherapy with radiation for anticancer therapy. Immunotherapy. 2016;7:967–80.

Google Scholar 

Qu C, Zhang H, Cao H, Tang L, Mo H, Liu F, et al. Tumor buster - where will the CAR-T cell therapy ‘missile’ go? Mol Cancer. 2022;21:201.

Article  Google Scholar 

Stern LA, Jonsson VD, Priceman SJ. CAR T cell therapy Progress and Challenges for solid tumors. Cancer Treat Res. 2020;180:297–326.

Article  CAS  PubMed  Google Scholar 

Daguenet E, Louati S, Wozny A, Vial N, Gras M, Guy J et al. Radiation-induced bystander and abscopal effects: important lessons from preclinical models. Br J Cancer. 2020;123(3):339–48.

Pouget JP, Georgakilas AG, Ravanat JL. Targeted and off-target (bystander and abscopal) Effects of Radiation Therapy: Redox Mechanisms and Risk/Benefit analysis. Antioxid Redox Signal. 2018;29:1447–87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Azzam EI, Jay-Gerin JP, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury.Cancer Lett. 2012;327(1-2):48–60.

Walle T, Monge RM, Cerwenka A, Ajona D, Melero I, Lecanda F. Radiation effects on antitumor immune responses: Current perspectives and challenges. Ther.Adv. Med. Oncol. 2018; 10:1758834017742575.

Prasanna A, Ahmed MM, Mohiuddin M, Coleman CN. Exploiting sensitization windows of opportunity in hyper and hypofractionated radiation therapy. J Thorac Dis. 2014;6:287–302.

PubMed  PubMed Central  Google Scholar 

Yoshimoto Y, Kono K, Suzuki Y. Anti-Tumor Immune responses Induced by Radiotherapy: a review. Fukushima J Med Sci. 2015;61:13–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Apetoh L, Ghiringhelli F, Tesniere A, Criollo A, Ortiz C, Lidereau R et al. The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy.Immunol. Rev. 2007; 220:47–59.

McKelvey KJ, Hudson AL, Back M, Eade T, Diakos CI. Radiation, inflammation and the immune response in cancer. Mamm Genome Springer US. 2018;29:843–65.

Article  CAS  Google Scholar 

Mazo IB, Quackenbush EJ, Lowe JB, Von Andrian UH. Total body irradiation causes profound changes in endothelial traffic molecules for hematopoietic progenitor cell recruitment to bone marrow. Blood. 2002; 99(11):4182–91.

Rekers NH, Zegers CML, Yaromina A, Lieuwes NG, Biemans R, Senden-Gijsbers BLMG, et al. Combination of radiotherapy with the immunocytokine L19-IL2: additive effect in a NK cell dependent tumour model. Radiother Oncol. 2015;116:438–42.

Article  CAS  Google Scholar 

Gough MJ, Crittenden MR, Sarff M, Pang P, Seung SK, Vetto JT, et al. Adjuvant therapy with agonistic antibodies to CD134 (OX40) increases local control after surgical or radiation therapy of cancer in mice. J Immunother. 2010;33:798–809.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng L, Liang H, Xu M, Yang X, Burnette B, Arina A et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity. 2014; 41(5):843–52.

Golden EB, Chhabra A, Chachoua A, Adams S, Donach M, Fenton-Kerimian M, et al. Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol. 2015;16:795–803.

Article  CAS  Google Scholar 

De Ruysscher D, Niedermann G, Burnet NG, Siva S, Lee AWM, Hegi-Johnson F. Radiotherapy toxicity.Nat Rev Dis Prim. Nat Rev Dis Prim. 2019;5(1):13.

Diaz MF, Horton PD, Dumbali SP, Kumar A, Livingston M, Skibber MA et al. Bone marrow stromal cell therapy improves survival after radiation injury but does not restore endogenous hematopoiesis. Sci Rep. 2020;1–19.

Lumniczky K, Candéias SM, Gaipl US, Frey B, Editorial. Radiation and the immune system: current knowledge and future perspectives. Front Immunol. 2018;8:2017–9.

Article  Google Scholar 

Aliru ML, Schoenhals JE, Venkatesulu BP, Anderson CC, Barsoumian HB, Younes AI, et al. Radiation therapy and immunotherapy: what is the optimal timing or sequencing? Immunotherapy. 2018;10:299–316.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qin S, Xu L, Yi M, Yu S, Wu K, Luo S. Novel immune checkpoint targets: Moving beyond PD-1 and CTLA-4.Mol. Cancer. 2019; 18(1):155.

Stanczak MA, Läubli H. Siglec receptors as new immune checkpoints in cancer. Mol Aspects Med Pergamon. 2023;90:101112.

Article  CAS  Google Scholar 

Theelen WSME, Chen D, Verma V, Hobbs BP, Peulen HMU, Aerts JGJV, et al. Pembrolizumab with or without radiotherapy for metastatic non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Respir Med. 2021;9:467–75.

Article  CAS  Google Scholar 

Spigel DR, Faivre-Finn C, Gray JE, Vicente D, Planchard D, Paz-Ares L, et al. Five-year survival outcomes from the PACIFIC Trial: Durvalumab after Chemoradiotherapy in Stage III non–small-cell Lung Cancer. J Clin Oncol. 2022;40:1301.

Article  CAS  Google Scholar 

Grosser R, Cherkassky L, Chintala N, Adusumilli PS. Combination immunotherapy with CAR T cells and checkpoint blockade for the treatment of solid tumors. Cancer Cell. 2019;36:471–82.

Article  CAS  PubMed  Google Scholar 

Ishikawa F, Nakano H, Seo A, Okada Y, Torihata H, Tanaka Y et al. Irradiation up-regulates CD80 expression through induction of tumour necrosis factor-α and CD40 ligand expression on B lymphoma cells. Immunology. 2002;106(3):354–62.

Torihata H, Ishikawa F, Okada Y, Tanaka Y, Uchida T, Suguro T et al. Irradiation up-regulates CD80 expression through two different mechanisms in spleen B cells, B lymphoma cells, and dendritic cells. Immunology. 2004;112(2):219–27.

Zhang L, Sinha M, Subudhi SK, Chen B, Marquez J, Liu E et al. The impact of prior radiation therapy on outcome in a phase 2 trial combining sipuleucel-T (SipT) and ipilimumab (Ipi) in patients (pts) with metastatic castration resistant prostate cancer (mCRPC). J Clin Oncol. 2021;39:5045.

Tang C, Welsh JW, De Groot P, Massarelli E, Chang JY, Hess KR et al. Ipilimumab with stereotactic ablative radiation therapy: Phase i results and immunologic correlates from peripheral T cells. Clin Cancer Res. 2017;23(6):1388–96.

Wu C, Te, Chen WC, Chang YH, Lin WY, Chen MF. The role of PD-L1 in the radiation response and clinical outcome for bladder cancer. Sci Rep. 2016;6:1–9.

Google Scholar 

Shen MJ, Xu LJ, Yang L, Tsai Y, Keng PC, Chen Y et al. Radiation alters PD-L1/NKG2D ligand levels in lung cancer cells and leads to immune escape from NK cell cytotoxicity via IL-6- MEK/Erk signaling pathway. Oncotarget. 2017;8(46):80506–20.

Derer A, Spiljar M, Bäumler M, Hecht M, Fietkau R, Frey B, et al. Chemoradiation increases PD-L1 expression in certain melanoma and glioblastoma cells. Front Immunol. 2016;7:1–11.

Article  Google Scholar 

Wolf Y, Anderson AC, Kuchroo VK. TIM3 comes of age as an inhibitory receptor. Nat Rev Immunol. 2020;20(3):173–85.

Chiba S, Baghdadi M, Akiba H, Yoshiyama H, Kinoshita I, Dosaka-Akita H et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol. 2012;13(9):832–42.

Huang YH, Zhu C, Kondo Y, Anderson AC, Gandhi A, Russell A et al. CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature. 2015;517(7534):386–90.

Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol. 6(12):1245–52.

Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med Nat Med. 2007;13:54–61.

Article  CAS  PubMed  Google Scholar 

Davis HW, Vallabhapurapu SD, Chu Z, Vallabhapurapu SL, Franco RS, Mierzwa M, et al. Enhanced phosphatidylserine-selective cancer therapy with irradiation and SapC-DOPS nanovesicles. Oncotarget. 2019;10(8):856–68.

Google Scholar 

Liao Y, Liu S, Fu S, Wu J. HMGB1 in Radiotherapy: a two Headed Signal regulating Tumor Radiosensitivity and Immunity. Onco Targets Ther. 2020;13:6859–71.

Li J, Chen Y, Fan Y, Wang H, Mu W, Liu X. Radiotherapy combined with anti-CEACAM1 immunotherapy to induce survival advantage in glioma. Discov Oncol. 2023;14(1):32.

Article  Google Scholar 

Triebel F, Jitsukawa S, Baixeras E, Roman-Roman S, Genevee C, Viegas-Pequignot E et al. LAG-3, a novel lymphocyte activation gene closely related to CD4. J Exp Med. 1990;171(5):1393–405.

Kouo T, Huang L, Pucsek AB, Cao M, Solt S, Armstrong T et al. Galectin-3 shapes antitumor immune responses by suppressing CD8 T Cells via LAG-3 and Inhibiting Expansion of Plasmacytoid Dendritic Cells. Cancer Immunol Res. 2015;3(4):412–23

Kelly RJ, Zaidi AH, Smith MA, Omstead AN, Kosovec JE, Matsui D et al. Magnitude and duration of immune checkpoint up-regulation and changes in the immune microenvironment post chemo-radiation (CRT) in esophageal cancer. J Clin Oncol. 2017;35(15)_suppl:4060.

Andrews LP, Marciscano AE, Drake CG, Vignali DAA. LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev. 2017;276:80–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bailey LA, Jamshidi-Parsian A, Patel T, Koonce NA, Diekman AB, Cifarelli CP et al. Combined temozolomide and ionizing radiation induces galectin-1 and galectin-3 expression in a model of human glioma.Tumor Microenviron Ther. 2015;2:19–31.

Jing W, Gershan JA, Weber J, Tlomak D, McOlash L, Sabatos-Peyton C, et al. Combined immune checkpoint protein blockade and low dose whole body irradiation as immunotherapy for myeloma. J Immunother Cancer. 2015;3:1–15.

Article  Google Scholar 

Kim JE, Patel MA, Mangraviti A, Kim ES, Theodros D, Velarde E, et al. Combination therapy with Anti-PD-1, Anti-TIM-3, and Focal Radiation results in regression of murine gliomas HHS Public Access. Clin Cancer Res. 2017;23(1):124–36.

Article  CAS  PubMed  Google Scholar 

Grapin M, Richard C, Limagne E, Boidot R, Morgand V, Bertaut A et al. Optimized fractionated radiotherapy with anti-PD-L1 and anti-TIGIT: A promising new combination. J Immunother Cancer. 2019;7(1):160.

Song KH, Jung SY, Kang SM, Kim MH, Ahn J, Hwang SG, et al. Induction of immunogenic cell death by radiation-upregulated karyopherin alpha 2 in vitro. Eur J Cell Biol Elsevier GmbH. 2016;95:219–27.

Article  CAS  Google Scholar 

Gupta D, Crosby ME, Almasan A, Macklis RM. Regulation of CD20 expression by radiation-induced changes in intracellular redox status.Free Radic Biol Med. 2008;44(4):614–23.

Kunala S, Macklis RM. Ionizing radiation induces CD20 surface expression on human B cells.Int J Cancer. 2001;96(3):178–81.

Kang Y, Hirano K, Suzuki N, Enomoto A, Morita A, Irimura T et al. Increased expression after X-irradiation of MUC1 in cultured human colon carcinoma HT-29 cells. Japanese J Cancer Res. 2000;91(3):324–30.

Hareyama M, Imai K, Ban T, Koshiba H, Kubo K, Shidou M, et al. Effect of radiation on the expression of carcinoembryonic antigen on the membranes of human gastric adenocarcinoma cells–immunological study using monoclonal antibodies. Nippon Igaku Hoshasen Gakkai Zasshi. 1988; 48(12):1572–4.

Dovedi SJ, Adlard AL, Lipowska-Bhalla G, McKenna C, Jones S, Cheadle EJ, et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res. 2014;74(19):5458–68.

Article  CAS  PubMed  Google Scholar 

Qin VM, Haynes NM, D’Souza C, Neeson PJ, Zhu JJ. CAR-T plus radiotherapy: a promising combination for immunosuppressive tumors. Front Immunol Frontiers Media S A. 2022;12:5897.

Google Scholar 

Hauth F, Ho AY, Ferrone S, Duda DG. Radiotherapy to enhance chimeric Antigen receptor T-Cell therapeutic efficacy in solid tumors: a narrative review. JAMA Oncol. 2021;7(7):1051–9.

Google Scholar 

Gudipati V, Rydzek J, Doel-Perez I, Gonçalves VDR, Scharf L, Königsberger S et al. Inefficient CAR-proximal signaling blunts antigen sensitivity. Nat Immunol. 2020;21(8):848–56.

Liu G, Rui W, Zhao X, Lin X. Enhancing CAR-T cell efficacy in solid tumors by targeting the tumor microenvironment. Cell Mol Immunol. 2021;18(5):1085–

留言 (0)

沒有登入
gif