ATF6β Deficiency Elicits Anxiety-like Behavior and Hyperactivity Under Stress Conditions

Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–451. https://doi.org/10.1016/j.cell.2006.04.014

Article  CAS  PubMed  Google Scholar 

Mori K (2009) Signalling pathways in the unfolded protein response: development from yeast to mammals. J Biochem 146:743–750. https://doi.org/10.1093/jb/mvp166

Article  CAS  PubMed  Google Scholar 

Sokka AL, Putkonen N, Mudo G, Pryazhnikov E, Reijonen S, Khiroug L et al (2007) Endoplasmic reticulum stress inhibition protects against excitotoxic neuronal injury in the rat brain. J Neurosci 27:901–908. https://doi.org/10.1523/JNEUROSCI.4289-06.2007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sprencke NT, Sims SG, Sánchez CL, Meares GP (2017) Endoplasmic reticulum stress and inflammation in the central nervous system. Mol Neurodegener 12:42. https://doi.org/10.1186/s13024-017-0183-y

Article  CAS  Google Scholar 

Thiebaut AM, Hedou E, Marciniak SJ, Vivien D, Roussel BD (2019) Proteostasis during cerebral ischemia. Front Neurosci 13:637. https://doi.org/10.3389/fnins.2019.00637

Article  PubMed  PubMed Central  Google Scholar 

Hayashi T, Suet TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate ca(2+) signaling and cell survival. Cell 131:596–610. https://doi.org/10.1016/j.cell.2007.08.036

Article  CAS  PubMed  Google Scholar 

Nguyen LD, Fischer TT, Abreu D, Arroyo A, Urano F, Ehrlich BE (2020) Calpain inhibitor and ibudilast rescue β cell functions in a cellular model of Wolfram syndrome. Proc Natl Acad Sci USA 117:17389–17398. https://doi.org/10.1073/pnas.2007136117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kato T, Ishiwata M, Yamada K, Kasahara T, Kakiuchi C, Iwamoto K et al (2008) Behavioral and gene expression analyses of Wfs1 knockout mice as a possible animal model of mood disorder. Neurosci Res 61:143–158. https://doi.org/10.1016/j.neures.2008.02.002

Article  CAS  PubMed  Google Scholar 

Luuk H, Plaas M, Raud S, Innos J, Sütt S, Lasner H et al (2009) Wfs1-deficient mice display impaired behavioural adaptation in stressful environment. Behav Brain Res 198:334–345. https://doi.org/10.1016/j.bbr.2008.11.007

Article  CAS  PubMed  Google Scholar 

Sabino V, Cottone P, Parylak SL, Steardo L, Zorrilla EP (2009) Sigma-1 receptor knockout mice display a depressive-like phenotype. Behav Brain Res 198:472–476. https://doi.org/10.1016/j.bbr.2008.11.036

Article  CAS  PubMed  Google Scholar 

Martínez G, Vidal RL, Mardones P, Serrano FG, Ardiles AO, Wirth C et al (2016) Regulation of memory formation by the transcription factor XBP1. Cell Rep 14:1382–1394. https://doi.org/10.1016/j.celrep.2016.01.028

Article  CAS  PubMed  Google Scholar 

Haze K, Yoshida H, Yanagi H, Yura T, Mori K (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10:3787–3799. https://doi.org/10.1091/mbc.10.11.3787

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086. https://doi.org/10.1126/science.1209038

Article  CAS  PubMed  Google Scholar 

Ye J, Rawson RB, Komuro R, Chen X, Davé UP, Prywes R et al (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 6:1355–1364. https://doi.org/10.1016/s1097-2765(00)00133-7

Article  CAS  PubMed  Google Scholar 

Hashida K, Kitao Y, Sudo H, Awa Y, Maeda S, Mori K et al (2012) ATF6alpha promotes astroglial activation and neuronal survival in a chronic mouse model of Parkinson’s disease. PLoS ONE 7:e47950. https://doi.org/10.1371/journal.pone.0047950

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoshikawa A, Kamide T, Hashida K, Ta HM, Inahata Y, Takarada-Iemata M et al (2015) Deletion of Atf6α impairs astroglial activation and enhances neuronal death following brain ischemia in mice. J Neurochem 132:342–353. https://doi.org/10.1111/jnc.12981

Article  CAS  PubMed  Google Scholar 

Kezuka D, Tkarada-Iemata M, Hattori T, Mori K, Takahashi R, Kitao Y et al (2016) Deletion of Atf6alpha enhances kainate-induced neuronal death in mice. Neurochem Int 92:67–74. https://doi.org/10.1016/j.neuint.2015.12.009

Article  CAS  PubMed  Google Scholar 

Ta HM, Le TM, Ishii H, Takarada-Iemata M, Hattori T, Hashida K et al (2016) Atf6α deficiency suppresses microglial activation and ameliorates pathology of experimental autoimmune encephalomyelitis. J Neurochem 139:1124–1137. https://doi.org/10.1111/jnc.13714

Article  CAS  PubMed  Google Scholar 

Nguyen DT, Le TM, Hattori T, Takarada-Iemata M, Ishii H, Roboon J et al (2021) The ATF6β-calreticulin axis promotes neuronal survival under endoplasmic reticulum stress and excitotoxicity. Sci Rep 11:13086. https://doi.org/10.1038/s41598-021-92529-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamamoto K, Sato T, Matsui T, Sato M, Okada T, Yoshida H et al (2007) Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell 13:365–376. https://doi.org/10.1016/j.devcel.2007.07.018

Article  CAS  PubMed  Google Scholar 

Hattori T, Shimizu S, Koyama Y, Emoto H, Matsumoto Y, Kumamoto N et al (2014) DISC1 (disrupted-in-schizophrenia-1) regulates differentiation of oligodendrocytes. PLoS ONE 9:e88506. https://doi.org/10.1371/journal.pone.0088506

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miyakawa T, Yamada M, Duttaroy A, Wess J (2001) Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor. J Neurosci 21:5239–5250. https://doi.org/10.1523/JNEUROSCI.21-14-05239.2001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takao K, Miyakawa T (2006) Light/dark transition test for mice. J Vis Exp 13:104. https://doi.org/10.3791/104

Article  Google Scholar 

Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463:3–33. https://doi.org/10.1016/s0014-2999(03)01272-x

Article  CAS  PubMed  Google Scholar 

Komada M, Takao K, Miyakawa T (2008) Elevated plus maze for mice. J Vis Exp 22:1088. https://doi.org/10.3791/1088

Article  Google Scholar 

Omata Y, Aoki R, Aoki-Yoshida A, Hiemori K, Toyoda A, Tateno H et al (2018) Reduced fucosylation in the distal intestinal epithelium of mice subjected to chronic social defeat stress. Sci Rep 8:13199. https://doi.org/10.1038/s41598-018-31403-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shoji H, Takao K, Hattori S, Miyakawa T (2016) Age-related changes in behavior in C57BL/6J mice from young adulthood to middle age. Mol Brain 9:11. https://doi.org/10.1186/s13041-016-0191-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

CAS  PubMed  Google Scholar 

Fujioka R, Nii T, Iwaki A, Shibata A, Ito I, Kitaichi K et al (2014) Comprehensive behavioral study of mGluR3 knockout mice: implication in schizophrenia related endophenotypes. Mol Brain 7:31. https://doi.org/10.1186/1756-6606-7-31

Article  CAS  PubMed  PubMed Central  Google Scholar 

McCall JG, Al-Hasani R, Siuda ER, Hong DY, Norris AJ, Ford CP et al (2015) CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety. Neuron 87:605–620. https://doi.org/10.1016/j.neuron.2015.07.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tanaka T, Shimizu S, Ueno M, Fujihara Y, Ikawa M, Miyata S (2018) MARCKSL1 regulates spine formation in the amygdala and controls the hypothalamic-pituitary-adrenal axis and anxiety-like behaviors. EBioMedicine 30:62–73. https://doi.org/10.1016/j.ebiom.2018.03.018

Article  PubMed  PubMed Central  Google Scholar 

de Kloet ER, Joëls M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463–475. https://doi.org/10.1038/nrn1683

Article  CAS  PubMed  Google Scholar 

Herman JP, Tasker JG (2016) Paraventricular hypothalamic mechanisms of chronic stress adaptation. Front Endocrinol 7:137. https://doi.org/10.3389/fendo.2016.00137

Article  Google Scholar 

Jin D, Liu HX, Hirai H, Torashima T, Nagai T, Lopatina O et al (2007) CD38 is critical for social behaviour by regulating oxytocin secretion. Nature 446:41–45. https://doi.org/10.1038/nature05526

Article  CAS  PubMed  Google Scholar 

Terauchi A, Johnson-Venkatesh EM, Bullock B, Lehtinen MK, Umemori H (2016) Retrograde fibroblast growth factor 22 (FGF22) signaling regulates insulin-like growth factor 2 (IGF2) expression for activity-dependent synapse stabilization in the mammalian brain. Elife 5:e12151. https://doi.org/10.7554/eLife.12151

Article 

留言 (0)

沒有登入
gif