Regulatory Basis of Adipokines Leptin and Adiponectin in Epilepsy: from Signaling Pathways to Glucose Metabolism

Kahn D, Macias E, Zarini S, Garfield A, Zemski Berry K, MacLean P et al (2022) Exploring visceral and subcutaneous adipose tissue secretomes in human obesity: implications for metabolic disease. Endocrinology. https://doi.org/10.1210/endocr/bqac140

Article  PubMed  Google Scholar 

Cui Q, Zhang Y, Tian N, Yang J, Ya D, Xiang W et al (2022) Leptin promotes angiogenesis via pericyte STAT3 pathway upon intracerebral hemorrhage. Cells. https://doi.org/10.3390/cells11172755

Article  PubMed  PubMed Central  Google Scholar 

Tu WJ, Qiu HC, Liu YK, Liu Q, Zeng X, Zhao J (2020) Elevated levels of adiponectin associated with major adverse cardiovascular and cerebrovascular events and mortality risk in ischemic stroke. Cardiovasc Diabetol 19(1):125. https://doi.org/10.1186/s12933-020-01096-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Toscano ECB, Lessa JMK, Gonçalves AP, Rocha NP, Giannetti AV, de Oliveira GN et al (2019) Circulating levels of adipokines are altered in patients with temporal lobe epilepsy. Epilepsy Behav 90:137–141. https://doi.org/10.1016/j.yebeh.2018.11.023

Article  PubMed  Google Scholar 

Kuo YC, Wang IH, Rajesh R (2021) Use of leptin-conjugated phosphatidic acid liposomes with resveratrol and epigallocatechin gallate to protect dopaminergic neurons against apoptosis for Parkinson’s disease therapy. Acta Biomater 119:360–374. https://doi.org/10.1016/j.actbio.2020.11.015

Article  CAS  PubMed  Google Scholar 

He K, Nie L, Ali T, Wang S, Chen X, Liu Z et al (2021) Adiponectin alleviated Alzheimer-like pathologies via autophagy-lysosomal activation. Aging Cell 20(12):e13514. https://doi.org/10.1111/acel.13514

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang LP, Waldbaum S, Rowley S, Huang TT, Day BJ, Patel M (2012) Mitochondrial oxidative stress and epilepsy in SOD2 deficient mice: attenuation by a lipophilic metalloporphyrin. Neurobiol Dis 45(3):1068–1076. https://doi.org/10.1016/j.nbd.2011.12.025

Article  CAS  PubMed  Google Scholar 

Guo Z, Jiang H, Xu X, Duan W, Mattson MP (2008) Leptin-mediated cell survival signaling in hippocampal neurons mediated by JAK STAT3 and mitochondrial stabilization. J Biol Chem 283(3):1754–1763. https://doi.org/10.1074/jbc.M703753200

Article  CAS  PubMed  Google Scholar 

Oztas B, Sahin D, Kir H, Eraldemir FC, Musul M, Kuskay S et al (2017) The effect of leptin, ghrelin, and neuropeptide-Y on serum Tnf-Α, Il-1β, Il-6, Fgf-2, galanin levels and oxidative stress in an experimental generalized convulsive seizure model. Neuropeptides 61:31–37. https://doi.org/10.1016/j.npep.2016.08.002

Article  CAS  PubMed  Google Scholar 

Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Iwabu M et al (2007) Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med 13(3):332–339. https://doi.org/10.1038/nm1557

Article  CAS  PubMed  Google Scholar 

Ruiz M, Ståhlman M, Borén J, Pilon M (2019) AdipoR1 and AdipoR2 maintain membrane fluidity in most human cell types and independently of adiponectin. J Lipid Res 60(5):995–1004. https://doi.org/10.1194/jlr.M092494

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hug C, Wang J, Ahmad NS, Bogan JS, Tsao TS, Lodish HF (2004) T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc Natl Acad Sci USA 101(28):10308–10313. https://doi.org/10.1073/pnas.0403382101

Article  CAS  PubMed  PubMed Central  Google Scholar 

Waki H, Yamauchi T, Kamon J, Kita S, Ito Y, Hada Y et al (2005) Generation of globular fragment of adiponectin by leukocyte elastase secreted by monocytic cell line THP-1. Endocrinology 146(2):790–796. https://doi.org/10.1210/en.2004-1096

Article  CAS  PubMed  Google Scholar 

Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S et al (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423(6941):762–769. https://doi.org/10.1038/nature01705

Article  CAS  PubMed  Google Scholar 

Park HS, Lim JH, Kim MY, Kim Y, Hong YA, Choi SR et al (2016) Resveratrol increases AdipoR1 and AdipoR2 expression in type 2 diabetic nephropathy. J Transl Med 14(1):176. https://doi.org/10.1186/s12967-016-0922-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao W, Kong F, Gong X, Guo Z, Zhao L, Wang S (2021) Activation of AdipoR1 with rCTRP9 preserves BBB Integrity through the APPL1/AMPK/Nrf2 signaling pathway in ICH mice. Oxid Med Cell Longev 2021:2801263. https://doi.org/10.1155/2021/2801263

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song J, Choi SM, Whitcomb DJ, Kim BC (2017) Adiponectin controls the apoptosis and the expression of tight junction proteins in brain endothelial cells through AdipoR1 under beta amyloid toxicity. Cell Death Dis 8(10):e3102. https://doi.org/10.1038/cddis.2017.491

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu N, Zhang Y, Doycheva DM, Ding Y, Zhang Y, Tang J et al (2018) Adiponectin attenuates neuronal apoptosis induced by hypoxia-ischemia via the activation of AdipoR1/APPL1/LKB1/AMPK pathway in neonatal rats. Neuropharmacology 133:415–428. https://doi.org/10.1016/j.neuropharm.2018.02.024

Article  CAS  PubMed  Google Scholar 

Lee EB, Warmann G, Dhir R, Ahima RS (2011) Metabolic dysfunction associated with adiponectin deficiency enhances kainic acid-induced seizure severity. J Neurosci 31(40):14361–14366. https://doi.org/10.1523/jneurosci.3171-11.2011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song J, Kang SM, Kim E, Kim CH, Song HT, Lee JE (2015) Adiponectin receptor-mediated signaling ameliorates cerebral cell damage and regulates the neurogenesis of neural stem cells at high glucose concentrations: an in vivo and in vitro study. Cell Death Dis 6(8):e1844. https://doi.org/10.1038/cddis.2015.220

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu B, Liu J, Wang JG, Liu CL, Yan HJ (2020) AdipoRon improves cognitive dysfunction of Alzheimer’s disease and rescues impaired neural stem cell proliferation through AdipoR1/AMPK pathway. Exp Neurol 327:113249. https://doi.org/10.1016/j.expneurol.2020.113249

Article  CAS  PubMed  Google Scholar 

Bloemer J, Pinky PD, Smith WD, Bhattacharya D, Chauhan A, Govindarajulu M et al (2019) Adiponectin knockout mice display cognitive and synaptic deficits. Front Endocrinol (Lausanne) 10:819. https://doi.org/10.3389/fendo.2019.00819

Article  PubMed  Google Scholar 

Li K, Wu C, Zhu Y, Yin W, Ren H, Yang X (2022) Construction and analysis of a competing endogenous RNA network associated with circRNAs dysregulated in medial temporal lobe epilepsy. Epileptic Disord 24(2):373–385. https://doi.org/10.1684/epd.2021.1403

Article  CAS  PubMed  Google Scholar 

Ergina JL, Amakhin DV, Postnikova TY, Soboleva EB, Zaitsev AV (2021) Short-term epileptiform activity potentiates excitatory synapses but does not affect intrinsic membrane properties of pyramidal neurons in the rat hippocampus in vitro. Biomedicines 9(10):1374. https://doi.org/10.3390/biomedicines9101374

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kovac S, Domijan AM, Walker MC, Abramov AY (2014) Seizure activity results in calcium- and mitochondria-independent ROS production via NADPH and xanthine oxidase activation. Cell Death Dis. 5(10):e1442. https://doi.org/10.1038/cddis.2014.390

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pecorelli A, Natrella F, Belmonte G, Miracco C, Cervellati F, Ciccoli L et al (2015) NADPH oxidase activation and 4-hydroxy-2-nonenal/aquaporin-4 adducts as possible new players in oxidative neuronal damage presents in drug-resistant epilepsy. Biochim Biophys Acta 1852(3):507–519. https://doi.org/10.1016/j.bbadis.2014.11.016

Article  CAS  PubMed  Google Scholar 

Rumià J, Marmol F, Sanchez J, Giménez-Crouseilles J, Carreño M, Bargalló N et al (2013) Oxidative stress markers in the neocortex of drug-resistant epilepsy patients submitted to epilepsy surgery. Epilepsy Res 107(1–2):75–81. https://doi.org/10.1016/j.eplepsyres.2013.08.020

Article  CAS  PubMed  Google Scholar 

Fulton RE, Pearson-Smith JN, Huynh CQ, Fabisiak T, Liang LP, Aivazidis S et al (2021) Neuron-specific mitochondrial oxidative stress results in epilepsy, glucose dysregulation and a striking astrocyte response. Neurobiol Dis 158:105470. https://doi.org/10.1016/j.nbd.2021.105470

Article  CAS  PubMed  PubMed Central  Google Scholar 

MacMullin P, Hodgson N, Damar U, Lee HHC, Hameed MQ, Dhamne SC et al (2020) Increase in seizure susceptibility after repetitive concussion results from oxidative stress, parvalbumin-positive interneuron dysfunction and biphasic increases in glutamate/GABA ratio. Cereb Cortex 30(12):6108–6120. https://doi.org/10.1093/cercor/bhaa157

Article  PubMed  PubMed Central  Google Scholar 

Prakash C, Mishra M, Kumar P, Kumar V, Sharma D (2019) Dehydroepiandrosterone alleviates oxidative stress and apoptosis in iron-induced epilepsy via activation of Nrf2/ARE signal pathway. Brain Res Bull 153:181–190. https://doi.org/10.1016/j.brainresbull.2019.08.019

Article  CAS  PubMed  Google Scholar 

Abe C, Denney D, Doyle A, Cullum M, Adams J, Perven G et al (2020) Comparison of psychiatric comorbidities and impact on quality of life in patients with epilepsy or psychogenic nonepileptic spells. Epilepsy Behav 102:106649. https://doi.org/10.1016/j.yebeh.2019.106649

Article  PubMed  Google Scholar 

Phuong TH, Houot M, Méré M, Denos M, Samson S, Dupont S (2021) Cognitive impairment in temporal lobe epilepsy: contributions of lesion, localization and lateralization. J Neurol 268(4):1443–1452. https://doi.org/10.1007/s00415-020-10307-6

Article  PubMed 

留言 (0)

沒有登入
gif