Modulation of Synaptic Plasticity Genes Associated to DNA Damage in a Model of Huntington’s Disease

Vonsattel J-P, Myers RH, Stevens TJ et al (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577. https://doi.org/10.1097/00005072-198511000-00003

Article  CAS  PubMed  Google Scholar 

Montoya A, Price BH, Menear M, Lepage M (2006) Brain imaging and cognitive dysfunctions in Huntington’s disease. J Psychiatr Neurosci 31(1):21–29

Google Scholar 

MacDonald ME, Ambrose CM, Duyao MP et al (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983. https://doi.org/10.1016/0092-8674(93)90585-E

Article  Google Scholar 

Browne SE, Beal MF (2004) The energetics of Huntington’s disease. Neurochem Res 29:531–546. https://doi.org/10.1023/B:NERE.0000014824.04728.dd

Article  CAS  PubMed  Google Scholar 

Browne SE, Beal MF (2006) Oxidative damage in Huntington’s disease pathogenesis. Antioxid Redox Signal 8:2061–2073. https://doi.org/10.1089/ars.2006.8.2061

Article  CAS  PubMed  Google Scholar 

Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795. https://doi.org/10.1038/nature05292

Article  CAS  PubMed  Google Scholar 

Jeon GS, Kim KY, Hwang YJ et al (2012) Deregulation of BRCA1 leads to impaired spatiotemporal dynamics of γ-H2AX and DNA damage responses in Huntington’s disease. Mol Neurobiol 45:550–563. https://doi.org/10.1007/s12035-012-8274-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giralt A, Rodrigo T, Martín ED et al (2009) Brain-derived neurotrophic factor modulates the severity of cognitive alterations induced by mutant huntingtin: involvement of phospholipaseCγ activity and glutamate receptor expression. Neuroscience 158:1234–1250. https://doi.org/10.1016/j.neuroscience.2008.11.024

Article  CAS  PubMed  Google Scholar 

Giralt A, Puigdellívol M, Carretón O et al (2012) Long-term memory deficits in Huntington’s disease are associated with reduced CBP histone acetylase activity. Hum Mol Genet 21:1203–1216. https://doi.org/10.1093/hmg/ddr552

Article  CAS  PubMed  Google Scholar 

Lione LA, Carter RJ, Hunt MJ et al (1999) Selective discrimination learning impairments in mice expressing the human Huntington’s disease mutation. J Neurosci 19:10428–10437. https://doi.org/10.1523/JNEUROSCI.19-23-10428.1999

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simmons DA, Rex CS, Palmer L et al (2009) Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington’s disease knockin mice. Proc Natl Acad Sci 106:4906–4911. https://doi.org/10.1073/pnas.0811228106

Article  PubMed  PubMed Central  Google Scholar 

Barco A, Pittenger C, Kandel ER (2003) CREB, memory enhancement and the treatment of memory disorders: promises, pitfalls and prospects. Expert Opin Ther Targets 7:101–114. https://doi.org/10.1517/14728222.7.1.101

Article  CAS  PubMed  Google Scholar 

Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038. https://doi.org/10.1126/science.1067020

Article  CAS  PubMed  Google Scholar 

Silva AJ, Kogan JH, Frankland PW, Kida S (1998) CREB and memory. Annu Rev Neurosci 21:127–148. https://doi.org/10.1146/annurev.neuro.21.1.127

Article  CAS  PubMed  Google Scholar 

Conkright MD, Canettieri G, Screaton R et al (2003) TORCs: transducers of regulated CREB activity. Mol Cell 12:413–423. https://doi.org/10.1016/j.molcel.2003.08.013

Article  CAS  PubMed  Google Scholar 

Li S, Zhang C, Takemori H et al (2009) TORC1 regulates activity-dependent CREB-target gene transcription and dendritic growth of developing cortical neurons. J Neurosci 29:2334–2343. https://doi.org/10.1523/JNEUROSCI.2296-08.2009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ravnskjaer K, Kester H, Liu Y et al (2007) Cooperative interactions between CBP and TORC2 confer selectivity to CREB target gene expression. EMBO J 26:2880–2889. https://doi.org/10.1038/sj.emboj.7601715

Article  CAS  PubMed  PubMed Central  Google Scholar 

Steffan JS, Kazantsev A, Spasic-Boskovic O et al (2000) The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci 97:6763–6768. https://doi.org/10.1073/pnas.100110097

Article  CAS  PubMed  PubMed Central  Google Scholar 

Korzus E, Rosenfeld MG, Mayford M (2004) CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42:961–972. https://doi.org/10.1016/j.neuron.2004.06.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cong S-Y, Pepers BA, Evert BO et al (2005) Mutant huntingtin represses CBP, but not p300, by binding and protein degradation. Mol Cell Neurosci 30:12–23. https://doi.org/10.1016/j.mcn.2005.05.003

Article  CAS  PubMed  Google Scholar 

Morrison BE, Majdzadeh N, D’Mello SR (2007) Histone deacetylases: focus on the nervous system. Cell Mol Life Sci 64:2258–2269. https://doi.org/10.1007/s00018-007-7035-9

Article  CAS  PubMed  Google Scholar 

Abel T, Zukin RS (2008) Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr Opin Pharmacol 8:57–64. https://doi.org/10.1016/j.coph.2007.12.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jia H, Pallos J, Jacques V et al (2012) Histone deacetylase (HDAC) inhibitors targeting HDAC3 and HDAC1 ameliorate polyglutamine-elicited phenotypes in model systems of Huntington’s disease. Neurobiol Dis 46:351–361. https://doi.org/10.1016/j.nbd.2012.01.016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cohen-Cory S, Kidane AH, Shirkey NJ, Marshak S (2010) Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev Neurobiol 70:271–288. https://doi.org/10.1002/dneu.20774

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benito E, Barco A (2010) CREB’s control of intrinsic and synaptic plasticity: implications for CREB-dependent memory models. Trends Neurosci 33:230–240. https://doi.org/10.1016/j.tins.2010.02.001

Article  CAS  PubMed  Google Scholar 

Madabhushi R, Gao F, Pfenning AR et al (2015) Activity-induced DNA breaks govern the expression of neuronal early-response genes. Cell 161:1592–1605. https://doi.org/10.1016/j.cell.2015.05.032

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trettel F, Rigamonti D, Hilditch-Maguire P et al (2000) Dominant phenotypes produced by the HD mutation in STHdhQ111 striatal cells. Hum Mol Genet 9:2799–2809. https://doi.org/10.1093/hmg/9.19.2799

Article  CAS  PubMed  Google Scholar 

Covarrubias-Pinto A, Moll P, Solís-Maldonado M et al (2015) Beyond the redox imbalance: oxidative stress contributes to an impaired GLUT3 modulation in Huntington’s disease. Free Radic Biol Med 89:1085–1096. https://doi.org/10.1016/j.freeradbiomed.2015.09.024

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sakamoto K, Karelina K, Obrietan K (2011) CREB: a multifaceted regulator of neuronal plasticity and protection. J Neurochem 116:1–9. https://doi.org/10.1111/j.1471-4159.2010.07080.x

Article  CAS  PubMed  Google Scholar 

Pregi N, Belluscio LM, Berardino BG et al (2017) Oxidative stress-induced CREB upregulation promotes DNA damage repair prior to neuronal cell death protection. Mol Cell Biochem 425:9–24. https://doi.org/10.1007/s11010-016-2858-z

Article  CAS  PubMed  Google Scholar 

Wang H, Lautrup S, Caponio D et al (2021) DNA damage-induced neurodegeneration in accelerated ageing and Alzheimer’s disease. Int J Mol Sci 22(13):6748

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maiuri T, Suart CE, Hung CLK et al (2019) DNA damage repair in Huntington’s disease and other neurodegenerative diseases. Neurotherapeutics 16:948–956. https://doi.org/10.1007/s13311-019-00768-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gonzalez-Hunt CP, Sanders LH (2021) DNA damage and repair in Parkinson’s disease: recent advances and new opportunities. J Neurosci Res 99:180–189. https://doi.org/10.1002/jnr.24592

Article  CAS  PubMed  Google Scholar 

Moshell AN, Barrett SF, Tarone RE, Robbins JH (1980) Radiosensitivity in Huntington’s disease: implications for pathogenesis and presymptomatic diagnosis. Lancet 315:9–11. https://doi.org/10.1016/S0140-6736(80)90550-4

Article  Google Scholar 

Robison SH, Bradley WG (1984) DNA damage and chronic neuronal degenerations. J Neurol Sci 64:11–20. https://doi.org/10.1016/0022-510X(84)90051-0

Article 

留言 (0)

沒有登入
gif