TRAF4 Silencing Induces Cell Apoptosis and Improves Retinoic Acid Sensitivity in Human Neuroblastoma

Maris JM, Hogarty MD, Bagatell R, Cohn SL (2007) Neuroblastoma. Lancet 369:2106–2120. https://doi.org/10.1016/S0140-6736(07)60983-0

Article  CAS  PubMed  Google Scholar 

Takita J (2021) Molecular basis and clinical features of neuroblastoma. JMA J 4:321–331. https://doi.org/10.31662/jmaj.2021-0077

Article  PubMed  PubMed Central  Google Scholar 

Ponzoni M, Bachetti T, Corrias MV, Brignole C, Pastorino F, Calarco E, Bensa V, Giusto E, Ceccherini I, Perri P (2022) Recent advances in the developmental origin of neuroblastoma: an overview. J Exp Clin Cancer Res 41:92. https://doi.org/10.1186/s13046-022-02281-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall C, Diller L, Weiss WA (2016) Neuroblastoma. Nat Rev Dis Primers 2:16078. https://doi.org/10.1038/nrdp.2016.78

Article  PubMed  Google Scholar 

Chung C, Boterberg T, Lucas J, Panoff J, Valteau-Couanet D, Hero B, Bagatell R, Hill-Kayser CE (2021) Neuroblastoma. Pediatr Blood Cancer 68(Suppl 2):e28473. https://doi.org/10.1002/pbc.28473

Article  PubMed  PubMed Central  Google Scholar 

Lundberg KI, Treis D, Johnsen JI (2022) Neuroblastoma heterogeneity, plasticity, and emerging therapies. Curr Oncol Rep 24:1053–1062. https://doi.org/10.1007/s11912-022-01270-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Castel V, Grau E, Noguera R, Martínez F (2007) Molecular biology of neuroblastoma. Clin Transl Oncol 9:478–483. https://doi.org/10.1007/s12094-007-0091-7

Article  CAS  PubMed  Google Scholar 

Salemi F, Alam W, Hassani MS, Hashemi SZ, Jafari AA, Mirmoeeni SMS, Arbab M, Mortazavizadeh SMR, Khan H (2022) Neuroblastoma: essential genetic pathways and current therapeutic options. Eur J Pharmacol 926:175030. https://doi.org/10.1016/j.ejphar.2022.175030

Article  CAS  PubMed  Google Scholar 

Qiu B, Matthay KK (2022) Advancing therapy for neuroblastoma. Nat Rev Clin Oncol 9:515–533. https://doi.org/10.1038/s41571-022-00643-z

Article  CAS  Google Scholar 

Zafar A, Wang W, Liu G, Wang X, Xian W, McKeon F, Foster J, Zhou J, Zhang RW (2021) Molecular targeting therapies for neuroblastoma: progress and challenges. Med Res Rev 41:961–1021. https://doi.org/10.1002/med.21750

Article  PubMed  Google Scholar 

Westerveld ASR, van Dalen EC, Asogwa OA, Koopman MMW, Papadakis V, Laureys G, van der Pal HJH, Kremer LCM, Tytgat GAM, Teepen JC (2022) Neuroblastoma survivors at risk for developing subsequent neoplasms: a systematic review. Cancer Treat Rev 104:102355. https://doi.org/10.1016/j.ctrv.2022.102355

Article  PubMed  Google Scholar 

Brodeur GM (2003) Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3:203–216. https://doi.org/10.1038/nrc1014

Article  CAS  PubMed  Google Scholar 

Aygun N (2018) Biological and genetic features of neuroblastoma and their clinical importance. Curr Pediatr Rev 14:73–90. https://doi.org/10.2174/1573396314666180129101627

Article  CAS  PubMed  Google Scholar 

Nicola S, Pieraccioli M, Peschiaroli A, Melino G, Raschellà G (2015) Neuroblastoma: oncogenic mechanisms and therapeutic exploitation of necroptosis. Cell Death Dis 6:e2010. https://doi.org/10.1038/cddis.2015.354

Article  CAS  Google Scholar 

Bradley JR, Pober JS (2001) Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene 20:6482–6491. https://doi.org/10.1038/sj.onc.1204788

Article  CAS  PubMed  Google Scholar 

So T (2022) The immunological significance of tumor necrosis factor receptor-associated factors (TRAFs). Int Immunol 34:7–20. https://doi.org/10.1093/intimm/dxab058

Article  CAS  PubMed  Google Scholar 

Park HH (2021) Structural feature of TRAFs, their related human diseases and therapeutic intervention. Pharm Res 44:475–486. https://doi.org/10.1007/s12272-021-01330-w

Article  CAS  Google Scholar 

Edilova MI, Abdul-Sater AA, Watts TH (2018) TRAF1 signaling in human health and disease. Front Immunol 9:2969. https://doi.org/10.3389/fimmu.2018.02969

Article  CAS  PubMed  PubMed Central  Google Scholar 

Au PY, Yeh WC (2007) Physiological roles and mechanisms of signaling by TRAF2 and TRAF5. In: Adv Exp Med Biol. Springer, New York, pp 32–47. https://doi.org/10.1007/978-0-387-70630-6_3

He JQ, Oganesyan G, Saha SK, Zarnegar B, Cheng G (2007) TRAF3 and its biological function. In: Adv Exp Med Biol. Springer, New York, pp 48–59. https://doi.org/10.1007/978-0-387-70630-6_4.

Ruan XQ, Zhang R, Li RJ, Zhu HK, Wang ZH, Wang CF, Cheng Z, Peng HL (2022) The research progress in physiological and pathological functions of TRAF4. Front Oncol 12:842072. https://doi.org/10.3389/fonc.2022.842072

Article  PubMed  PubMed Central  Google Scholar 

Li JD, Liu N, Tang L, Yan B, Chen X, Zhang JL, Peng C (2020) The relationship between TRAF6 and tumors. Cancer Cell Int 20:429. https://doi.org/10.1186/s12935-020-01517-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zotti T, Scudiero I, Vito P, Stilo R (2017) The emerging role of TRAF7 in tumor development. J Cell Physiol 232:1233–1238. https://doi.org/10.1002/jcp.25676

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pregi N, Wenker S, Vittori D, Leiros CP, Nesse A (2009) TNF-alpha-induced apoptosis is prevented by erythropoietin treatment on SH-SY5Y cells. Exp Cell Res 315:419–431. https://doi.org/10.1016/j.yexcr.2008.11.005

Article  CAS  PubMed  Google Scholar 

Ghyselinck NB, Duester G (2019) Retinoic acid signaling pathways. Development 146:dev167502. https://doi.org/10.1242/dev.167502

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin Y, Teh SS, Lau HLN, Xiao J, Mah SH (2022) Retinoids as anti-cancer agents and their mechanisms of action. Am J Cancer Res 12:938–960

CAS  PubMed  PubMed Central  Google Scholar 

Janesick A, Wu SC, Blumberg B (2015) Retinoic acid signaling and neuronal differentiation. Cell Mol Life Sci 72:1559–1576. https://doi.org/10.1007/s00018-014-1815-9

Article  CAS  PubMed  Google Scholar 

Bayeva N, Coll E, Piskareva O (2021) Differentiating neuroblastoma: a systematic review of the retinoic acid, its derivatives, and synergistic interactions. J Pers Med 11:211. https://doi.org/10.3390/jpm11030211

Article  PubMed  PubMed Central  Google Scholar 

Clark O, Daga S, Stoker AW (2013) Tyrosine phosphatase inhibitors combined with retinoic acid can enhance differentiation of neuroblastoma cells and trigger ERK- and AKT-dependent, p53-independent senescence. Cancer Lett 328:44–54. https://doi.org/10.1016/j.canlet.2012.09.014

Article  CAS  PubMed  Google Scholar 

Zimmerman MW, Durbin AD, He SN, Oppel F, Shi H, Tao T, Li ZD, Berezovskaya A, Liu Y, Zhang JH, Young RA, Abraham BJ, Look AT (2021) Retinoic acid rewires the adrenergic core regulatory circuitry of childhood neuroblastoma. Sci Adv 7:eabe0834. https://doi.org/10.1126/sciadv.abe0834

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dobrotkova V, Chlapek P, Mazanek P, Sterba J, Veselska R (2018) Traffic lights for retinoids in oncology: molecular markers of retinoid resistance and sensitivity and their use in the management of cancer differentiation therapy. BMC Cancer 18:1059. https://doi.org/10.1186/s12885-018-4966-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maeshima R, Moulding D, Stoker AW, Hart SL (2020) MYCN silencing by RNAi induces neurogenesis and suppresses proliferation in models of neuroblastoma with resistance to retinoic acid. Nucleic Acid Ther 30:237–248. https://doi.org/10.1089/nat.2019.0831

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Miranda RV, Zanotto-Filho A, de Bittencourt A, Pasquali M, Karina K, Gasparotto J, Dunkley P, Gelain DP, Claudio Fonseca Moreira J (2016) NRF2 mediates neuroblastoma proliferation and resistance to retinoic acid cytotoxicity in a model of in vitro neuronal differentiation. Mol Neurobiol 53:6124–6135. https://doi.org/10.1007/s12035-015-9506-6

Article  CAS  Google Scholar 

Brum PO, Viola GD, Saibro-Girardi C, Tiefensee-Ribeiro C, Brum MO, Gasparotto J, Krolow R, Claudio Fonseca Moreira J, Gelain DP (2022) Hypoxia-inducible factor-1α (HIF-1α) inhibition impairs retinoic acid-induced differentiation in SH-SY5Y neuroblastoma cells, leading to reduced neurite length and diminished gene expression related to cell differentiation. Neurochem Res 47:409–421. https://doi.org/10.1007/s11064-021-03454-3

Article  CAS  PubMed  Google Scholar 

Clark RA, Newton M, Qiao JB, Lee S, Chung DH (2021) Reactivation of silenced α-N-catenin induces retinoic acid sensitivity in neuroblastoma cells. Surgery 170:1546–1553. https://doi.org/10.1016/j.surg.2021.04.039

Article  PubMed  Google Scholar 

Hölzel M, Huang SD, Koster J, Ora I, Lakeman A, Caron H, Nijkamp W, Xie J, Callens T, Asgharzadeh S, Seeger RC, Messiaen L, Versteeg R, Bernards R (2010) NF1 is a tumor suppressor in neuroblastoma that determines retinoic acid response and disease outcome. Cell 142:218–229. https://doi.org/10.1016/j.cell.2010.06.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif