NMDA Receptor Activation and Ca2+/PKC Signaling in Nicotine-Induced GABA Transport Shift in Embryonic Chick Retina

Israel MR, Morgan M, Tay B, Deuis JR (2018) Toxins as tools: fingerprinting neuronal pharmacology. Neurosci Lett 679:4–14. https://doi.org/10.1016/j.neulet.2018.02.001

Article  CAS  PubMed  Google Scholar 

Ávila-Ruiz T, Carranza V, Gustavo LL et al (2014) Chronic administration of nicotine enhances NMDA-activated currents in the prefrontal cortex and core part of the nucleus accumbens of rats. Synapse 68:248–256. https://doi.org/10.1002/SYN.21726

Article  PubMed  Google Scholar 

Fowler CD, Turner JR, Imad Damaj M (2020) Molecular mechanisms associated with nicotine pharmacology and dependence. Handb Exp Pharmacol 258:373–393. https://doi.org/10.1007/164_2019_252

Article  CAS  PubMed  Google Scholar 

Neal MJ, Cunningham JR, Matthews KL (2001) Activation of nicotinic receptors on GABAergic amacrine cells in the rabbit retina indirectly stimulates dopamine release. Vis Neurosci 18:55–64. https://doi.org/10.1017/S0952523801181058

Article  CAS  PubMed  Google Scholar 

Wonnacott S (1997) Presynaptic nicotinic ACh receptors. Trends Neurosci 20:92–98. https://doi.org/10.1016/S0166-2236(96)10073-4

Article  CAS  PubMed  Google Scholar 

Reid MS, Fox L, Ho LB, Berger SP (2000) Nicotine stimulation of extracellular glutamate levels in the nucleus accumbens: neuropharmacological characterization. Synapse 35:129–136. https://doi.org/10.1002/(SICI)1098-2396(200002)35:2%3c129::AID-SYN5%3e3.0.CO;2-D

Article  CAS  PubMed  Google Scholar 

Sears SMS, Hewett SJ (2021) Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Exp Biol Med 246:1069–1083. https://doi.org/10.1177/1535370221989263

Article  CAS  Google Scholar 

Popova E (2015) GABAergic neurotransmission and retinal ganglion cell function. J Comp Physiol A 201(3):261–283. https://doi.org/10.1007/S00359-015-0981-Z

Article  CAS  Google Scholar 

Wang L, Shen X, Wu Y, Zhang D (2016) Coffee and caffeine consumption and depression: a meta-analysis of observational studies. Aust N Z J Psychiatry 50:228–242. https://doi.org/10.1177/0004867415603131

Article  PubMed  Google Scholar 

da Calaza K, C, Gardino PF, (2010) Neurochemical phenotype and birthdating of specific cell populations in the chick retina. An Acad Bras Cienc 82:595–608. https://doi.org/10.1590/S0001-37652010000300007

Article  PubMed  Google Scholar 

Thangaraj G, Greif A, Bachmann G, Layer PG (2012) Intricate paths of cells and networks becoming “Cholinergic” in the embryonic chicken retina. J Comp Neurol 520:3181–3193. https://doi.org/10.1002/CNE.23083

Article  CAS  PubMed  Google Scholar 

Ferreira DDPDP, Stutz B, de Mello FGG et al (2014) Caffeine potentiates the release of GABA mediated by NMDA receptor activation: Involvement of A1 adenosine receptors. Neuroscience 281:208–215. https://doi.org/10.1016/j.neuroscience.2014.09.060

Article  CAS  PubMed  Google Scholar 

Sorimachi M, Rhee JS, Shimura M, Akaike N (1997) Mechanisms of GABA- and glycine-induced increases of cytosolic Ca2+ concentrations in chick embryo ciliary ganglion cells. J Neurochem 69:797–805. https://doi.org/10.1046/J.1471-4159.1997.69020797.X

Article  CAS  PubMed  Google Scholar 

Govindpani K, Calvo-Flores Guzman B, Vinnakota C et al (2017) Towards a better understanding of GABAergic remodeling in Alzheimer’s disease. Int J Mol Sci. https://doi.org/10.3390/ijms18081813

Article  PubMed  PubMed Central  Google Scholar 

Borges-Martins VPP, Ferreira DDP, Souto AC et al (2019) Caffeine regulates GABA transport via A1R blockade and cAMP signaling. Neurochem Int. https://doi.org/10.1016/j.neuint.2019.104550

Article  PubMed  Google Scholar 

Eskandari S, Willford SL, Anderson CM (2017) Revised ion/substrate coupling stoichiometry of GABA transporters. Adv Neurobiol 16:85–116. https://doi.org/10.1007/978-3-319-55769-4_5

Article  PubMed  Google Scholar 

Bernath S, Zigmond MJ (1988) Characterization of [3H] GABA release from striatal slices: evidence for a calcium-independent process via the GABA uptake system. Neuroscience 27:563–570. https://doi.org/10.1016/0306-4522(88)90289-8

Article  CAS  PubMed  Google Scholar 

Calaza KC, Gardino PF, de Mello FG (2006) Transporter mediated GABA release in the retina: role of excitatory amino acids and dopamine. Neurochem Int 49:769–777. https://doi.org/10.1016/J.NEUINT.2006.07.003

Article  CAS  PubMed  Google Scholar 

do Nascimento JL, Ventura AL, Paes de Carvalho R, (1998) Veratridine- and glutamate-induced release of [3H]-GABA from cultured chick retina cells: possible involvement of a GAT-1-like subtype of GABA transporter. Brain Res 798:217–222

Article  PubMed  Google Scholar 

Whitworth TL, Quick MW (2001) Substrate-induced regulation of γ-aminobutyric acid transporter trafficking requires tyrosine phosphorylation. J Biol Chem 276:42932–42937. https://doi.org/10.1074/jbc.M107638200

Article  CAS  PubMed  Google Scholar 

Law RM, Stafford A, Quick MW (2000) Functional regulation of γ-aminobutyric acid transporters by direct tyrosine phosphorylation. J Biol Chem 275:23986–23991. https://doi.org/10.1074/jbc.M910283199

Article  CAS  PubMed  Google Scholar 

Beckman ML, Bernstein EM, Quick MW (1999) Multiple G protein-coupled receptors initiate protein kinase C redistribution of GABA transporters in hippocampal neurons. J Neurosci. https://doi.org/10.1523/JNEUROSCI.19-11-J0006.1999

Article  PubMed  PubMed Central  Google Scholar 

Wang D, Quick MW (2005) Trafficking of the plasma membrane gamma-aminobutyric acid transporter GAT1. Size and rates of an acutely recycling pool. J Biol Chem 280:18703–18709. https://doi.org/10.1074/jbc.M500381200

Article  CAS  PubMed  Google Scholar 

Yang XL (2004) Characterization of receptors for glutamate and GABA in retinal neurons. Prog Neurobiol 73:127–150. https://doi.org/10.1016/J.PNEUROBIO.2004.04.002

Article  CAS  PubMed  Google Scholar 

Hamassaki-Britto DE, Brzozowska-Prechtl A, Karten HJ et al (1991) GABA-like immunoreactive cells containing nicotinic acetylcholine receptors in the chick retina. J Comp Neurol 313:394–408. https://doi.org/10.1002/CNE.903130213

Article  CAS  PubMed  Google Scholar 

Dmitrieva NA, Lindstrom JM, Keyser KT (2001) The relationship between GABA-containing cells and the cholinergic circuitry in the rabbit retina. Vis Neurosci 18:93–100. https://doi.org/10.1017/S0952523801181083

Article  CAS  PubMed  Google Scholar 

Masland RH (2012) The neuronal organization of the retina. Neuron 76:266–280. https://doi.org/10.1016/j.neuron.2012.10.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kubrusly RCC, de Mello MCF, de Mello FG (1998) Aspartate as a selective NMDA receptor agonist in cultured cells from the avian retina. Neurochem Int 32:47–52. https://doi.org/10.1016/S0197-0186(97)00051-X

Article  CAS  PubMed  Google Scholar 

Kubrusly RCC, Günter A, Sampaio L et al (2018) Neuro-glial cannabinoid receptors modulate signaling in the embryonic avian retina. Neurochem Int 112:27–37. https://doi.org/10.1016/j.neuint.2017.10.016

Article  CAS  PubMed  Google Scholar 

Loureiro-dos-Santos NE, Prado MAM, De Melo Reis RA et al (2002) Regulation of vesicular acetylcholine transporter by the activation of excitatory amino acid receptors in the avian retina. Cell Mol Neurobiol 22:727–740. https://doi.org/10.1023/A:1021809124814

Article  CAS  PubMed  Google Scholar 

Hamburger V, Hamilton HL (1992) A series of normal stages in the development of the chick embryo. Dev Dyn 195:231–272. https://doi.org/10.1002/aja.1001950404

Article  CAS  PubMed  Google Scholar 

de Freitas APAP, Ferreira DDPDDP, Fernandes A et al (2016) Caffeine alters glutamate–aspartate transporter function and expression in rat retina. Neuroscience 337:285–294. https://doi.org/10.1016/j.neuroscience.2016.09.028

Article  CAS  PubMed  Google Scholar 

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Article  CAS  PubMed  Google Scholar 

de Melo Reis RA, Freitas HR, de Mello FG (2020) Cell calcium imaging as a reliable method to study neuron-glial circuits. Front Neurosci 14:975. https://doi.org/10.3389/FNINS.2020.569361/BIBTEX

Article  Google Scholar 

Freitas HR, Ferraz G, Ferreira GC et al (2016) Glutathione-induced calcium shifts in chick retinal glial cells. PLoS One 11:e0153677. https://doi.org/10.1371/JOURNAL.PONE.0153677

Article  PubMed  PubMed Central  Google Scholar 

Castillo-Rolón D, Ramírez-Sánchez E, Arenas-López G et al (2021) Nicotine increases spontaneous glutamate release in the rostromedial tegmental nucleus. Front Neurosci 14:1323. https://doi.org/10.3389/FNINS.2020.604583/BIBTEX

Article  Google Scholar 

Martins RS, de Freitas IG, Sathler MF et al (2018) Beta-adrenergic receptor activation increases GABA uptake in adolescent mice frontal cortex: modulation by cannabinoid receptor agonist WIN55,212–2. Neurochem Int 120:182–190. https://doi.org/10.1016/j.neuint.2018.08.011

留言 (0)

沒有登入
gif