Presymptomatic grey matter alterations in ALS kindreds: a computational neuroimaging study of asymptomatic C9orf72 and SOD1 mutation carriers

Miller T, Cudkowicz M, Shaw PJ et al (2020) Phase 1–2 trial of antisense oligonucleotide tofersen for SOD1 ALS. N Engl J Med 383:109–119

Article  CAS  PubMed  Google Scholar 

Mueller C, Berry JD, McKenna-Yasek DM et al (2020) SOD1 suppression with adeno-associated virus and microRNA in familial ALS. N Engl J Med 383:151–158

Article  CAS  PubMed  Google Scholar 

Omer T, Finegan E, Hutchinson S et al (2017) Neuroimaging patterns along the ALS-FTD spectrum: a multiparametric imaging study. Amyotroph Lateral Scler Frontotemporal Degener 18:611–623

Article  CAS  PubMed  Google Scholar 

Burke T, Pinto-Grau M, Lonergan K et al (2017) A Cross-sectional population-based investigation into behavioral change in amyotrophic lateral sclerosis: subphenotypes, staging, cognitive predictors, and survival. Ann Clin Transl Neurol 4:305–317

Article  PubMed  PubMed Central  Google Scholar 

Finegan E, Chipika RH, Shing SLH, Hardiman O, Bede P (2019) Primary lateral sclerosis: a distinct entity or part of the ALS spectrum? Amyotroph Lateral Scler Frontotemporal Degener 20:133–145

Article  PubMed  Google Scholar 

Burke T, Elamin M, Bede P et al (2016) Discordant performance on the “reading the mind in the eyes” test, based on disease onset in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 17:467–472

Article  CAS  PubMed  Google Scholar 

Kiernan MC, Ziemann U, Eisen A (2019) Amyotrophic lateral sclerosis: origins traced to impaired balance between neural excitation and inhibition in the neonatal period. Muscle Nerve 60:232–235

Article  PubMed  Google Scholar 

Bertrand A, Wen J, Rinaldi D et al (2018) Early cognitive, structural, and microstructural changes in presymptomatic C9orf72 carriers younger than 40 years. JAMA Neurol 75:236–245

Article  PubMed  Google Scholar 

Querin G, Bede P, El Mendili MM et al (2019) Presymptomatic spinal cord pathology in c9orf72 mutation carriers: a longitudinal neuroimaging study. Ann Neurol 86:158–167

Article  CAS  PubMed  Google Scholar 

Cirak S, Arechavala-Gomeza V, Guglieri M et al (2011) Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378:595–605

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mendell JR, Rodino-Klapac LR, Sahenk Z et al (2013) Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann Neurol 74:637–647

Article  CAS  PubMed  Google Scholar 

Mendell JR, Goemans N, Lowes LP et al (2016) Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann Neurol 79:257–271

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee SE, Sias AC, Mandelli ML et al (2017) Network degeneration and dysfunction in presymptomatic C9ORF72 expansion carriers. Neuroimage Clin 14:286–297

Article  PubMed  Google Scholar 

Walhout R, Schmidt R, Westeneng HJ et al (2015) Brain morphologic changes in asymptomatic C9orf72 repeat expansion carriers. Neurology 85:1780–1788

Article  CAS  PubMed  Google Scholar 

Le Blanc G, Jetté Pomerleau V, McCarthy J et al (2020) Faster cortical thinning and surface area loss in presymptomatic and symptomatic C9orf72 repeat expansion adult carriers. Ann Neurol 2:2

Google Scholar 

Papma JM, Jiskoot LC, Panman JL et al (2017) Cognition and gray and white matter characteristics of presymptomatic C9orf72 repeat expansion. Neurology 89:1256–1264

Article  PubMed  Google Scholar 

Lulé DE, Müller HP, Finsel J et al (2020) Deficits in verbal fluency in presymptomatic C9orf72 mutation gene carriers-a developmental disorder. J Neurol Neurosurg Psychiatry 91:1195–1200

Article  PubMed  Google Scholar 

Wen J, Zhang H, Alexander DC et al (2019) Neurite density is reduced in the presymptomatic phase of C9orf72 disease. J Neurol Neurosurg Psychiatry 90:387–394

Article  PubMed  Google Scholar 

De Vocht J, Blommaert J, Devrome M et al (2020) Use of multimodal imaging and clinical biomarkers in presymptomatic carriers of C9orf72 repeat expansion. JAMA Neurol 77:1–10

Article  PubMed Central  Google Scholar 

Babić Leko M, Župunski V, Kirincich J et al (2019) Molecular mechanisms of neurodegeneration related to C9orf72 hexanucleotide repeat expansion. Behav Neurol 2019:2909168

Article  PubMed  PubMed Central  Google Scholar 

Balendra R, Isaacs AM (2018) C9orf72-mediated ALS and FTD: multiple pathways to disease. Nat Rev Neurol 14:544–558

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ng MC, Ho JT, Ho SL et al (2008) Abnormal diffusion tensor in nonsymptomatic familial amyotrophic lateral sclerosis with a causative superoxide dismutase 1 mutation. J Magn Reson Imaging 27:8–13

Article  PubMed  Google Scholar 

Carew JD, Nair G, Andersen PM et al (2011) Presymptomatic spinal cord neurometabolic findings in SOD1-positive people at risk for familial ALS. Neurology 77:1370–1375

Article  CAS  PubMed  PubMed Central  Google Scholar 

Turner MR, Hammers A, Al-Chalabi A et al (2005) Distinct cerebral lesions in sporadic and “D90A” SOD1 ALS: studies with [11C]flumazenil PET. Brain 128:1323–1329

Article  CAS  PubMed  Google Scholar 

Panman JL, Jiskoot LC, Bouts M et al (2019) Gray and white matter changes in presymptomatic genetic frontotemporal dementia: a longitudinal MRI study. Neurobiol Aging 76:115–124

Article  PubMed  Google Scholar 

Rohrer JD, Nicholas JM, Cash DM et al (2015) Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis. Lancet Neurol 14:253–262

Article  PubMed  PubMed Central  Google Scholar 

Olney NT, Ong E, Goh SM et al (2020) Clinical and volumetric changes with increasing functional impairment in familial frontotemporal lobar degeneration. Alzheimers Dement 16:49–59

Article  PubMed  PubMed Central  Google Scholar 

Cash DM, Bocchetta M, Thomas DL et al (2018) Patterns of gray matter atrophy in genetic frontotemporal dementia: results from the GENFI study. Neurobiol Aging 62:191–196

Article  PubMed  PubMed Central  Google Scholar 

Diehl-Schmid J, Licata A, Goldhardt O et al (2019) FDG-PET underscores the key role of the thalamus in frontotemporal lobar degeneration caused by C9ORF72 mutations. Transl Psychiatry 9:54

Article  PubMed  PubMed Central  Google Scholar 

Malpetti M, Holland N, Jones PS et al (2021) Synaptic density in carriers of C9orf72 mutations: a [(11) C]UCB-J PET study. Ann Clin Transl Neurol 8:1515–1523

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Veenhuijzen K, Westeneng HJ, Tan HHG et al (2022) Longitudinal effects of asymptomatic C9orf72 carriership on brain morphology. Ann Neurol 2:2

Google Scholar 

Shoukry RS, Waugh R, Bartlett D, Raitcheva D, Floeter MK (2020) Longitudinal changes in resting state networks in early presymptomatic carriers of C9orf72 expansions. Neuroimage Clin 28:102354

Article  PubMed  PubMed Central  Google Scholar 

Bonelli RM, Cummings JL (2007) Frontal-subcortical circuitry and behavior. Dialog Clin Neurosci 9:141–151

Article  Google Scholar 

Lule D, Diekmann V, Muller HP, Kassubek J, Ludolph AC, Birbaumer N (2010) Neuroimaging of multimodal sensory stimulation in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 81:899–906

Article  PubMed  Google Scholar 

McKenna MC, Lope J, Bede P, Tan EL (2023) Thalamic pathology in frontotemporal dementia: predilection for specific nuclei, phenotype-specific signatures, clinical correlates, and practical relevance. Brain Behav. 2:e2881

Google Scholar 

McKenna MC, Li Hi Shing S, Murad A et al (2022) Focal thalamus pathology in frontotemporal dementia: phenotype-associated thalamic profiles. J Neurol Sci 436:120221

Article  PubMed  Google Scholar 

Chipika RH, Christidi F, Finegan E et al (2020) Amygdala pathology in amyotrophic lateral sclerosis and primary lateral sclerosis. J Neurol Sci 417:117039

Article  CAS  PubMed  Google Scholar 

Pinkhardt EH, van Elst LT, Ludolph AC, Kassubek J (2006) Amygdala size in amyotrophic lateral sclerosis without dementia: an in vivo study using MRI volumetry. BMC Neurol 6:48

Article  PubMed  PubMed Central  Google Scholar 

Chipika RH, Siah WF, Shing SLH et al (2020) MRI data confirm the selective involvement of thalamic and amygdalar nuclei in amyotrophic lateral sclerosis and primary lateral sclerosis. Data Brief 2:106246

Article  Google Scholar 

Christidi F, Karavasilis E, Rentzos M et al (2019) Hippocampal pathology in amyotrophic lateral sclerosis: selective vulnerability of subfields and their associated projections. Neurobiol Aging 84:178–188

留言 (0)

沒有登入
gif