Passive Targeted Drug Delivery of Venlafaxine HCl to the Brain by Modified Chitosan Nanoparticles: Characterization, Cellular Safety Assessment, and In Vivo Evaluation

Spitzer RL, et al. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med. 2006;166(10):1092–7.

Article  PubMed  Google Scholar 

Struzik L, et al. Treatments for generalized anxiety disorder. Expert Rev Neurother. 2004;4(2):285–94.

Article  CAS  PubMed  Google Scholar 

Zhou Y, et al. Increased brain uptake of venlafaxine loaded solid lipid nanoparticles by overcoming the efflux function and expression of P-gp. Arch Pharmacal Res. 2015;38(7):1325–35.

Article  CAS  Google Scholar 

Bhalekar M, et al. Statistical optimization of sustained release venlafaxine HCI wax matrix tablet. Indian J Pharm Sci. 2008;70(4):472.

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Lange E, et al. P-glycoprotein protein expression versus functionality at the blood-brain barrier using immunohistochemistry, microdialysis and mathematical modeling. Eur J Pharm Sci. 2018;124:61–70.

Article  PubMed  Google Scholar 

Kemper EM, et al. Increased penetration of paclitaxel into the brain by inhibition of P-Glycoprotein. Clin Cancer Res. 2003;9(7):2849–55.

CAS  PubMed  Google Scholar 

Uhr M, Grauer MT, Holsboer F. Differential enhancement of antidepressant penetration into the brain in mice with abcb1ab (mdr1ab) P-glycoprotein gene disruption. Biol Psychiat. 2003;54(8):840–6.

Article  CAS  PubMed  Google Scholar 

Bachmeier CJ, et al. Induction of drug efflux protein expression by venlafaxine but not desvenlafaxine. Biopharm Drug Dispos. 2011;32(4):233–44.

Article  CAS  PubMed  Google Scholar 

Ramakrishnan P. The role of P-glycoprotein in the blood-brain barrier. Einstein QJ Biol Med. 2003;19(1):160–5.

CAS  Google Scholar 

Parker S, Davey P. Pharmacoeconomics of intravenous drug administration. Pharmacoeconomics. 1992;1:103–15.

Article  CAS  PubMed  Google Scholar 

Bowman K, Leong KW. Chitosan nanoparticles for oral drug and gene delivery. Int J Nanomed. 2006;1(2):117–28.

Article  CAS  Google Scholar 

Magalhães P, et al. Venlafaxine pharmacokinetics focused on drug metabolism and potential biomarkers. Drug Metab Drug Interact. 2014;29(3):129–41.

Article  Google Scholar 

Finch A, Pillans P. P-glycoprotein and its role in drug-drug interactions. Aust Prescr. 2014;37(4):137–9.

Article  Google Scholar 

Dwibhashyam V, Nagappa A. Strategies for enhanced drug delivery to the central nervous system. Indian J Pharm Sci. 2008;70(2):145.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sugimoto H, et al. Quantitative investigation of the impact of P-glycoprotein inhibition on drug transport across blood-brain barrier in rats. Drug Metab Dispos. 2011;39(1):8–14.

Article  CAS  PubMed  Google Scholar 

Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood–brain barrier by nanoparticles. J Control Release. 2012;161(2):264–73.

Article  CAS  PubMed  Google Scholar 

Haque S, et al. Venlafaxine loaded chitosan NPs for brain targeting: pharmacokinetic and pharmacodynamic evaluation. Carbohyd Polym. 2012;89(1):72–9.

Article  CAS  Google Scholar 

Vyas TK, et al. Intranasal drug delivery for brain targeting. Curr Drug Deliv. 2005;2(2):165–75.

Article  CAS  PubMed  Google Scholar 

Gastaldi L, et al. Solid lipid nanoparticles as vehicles of drugs to the brain: current state of the art. Eur J Pharm Biopharm. 2014;87(3):433–44.

Article  CAS  PubMed  Google Scholar 

Shah S, et al. Preparation and characterization of venlafaxine hydrochloride-loaded chitosan nanoparticles and in vitro release of drug. J Appl Polym Sci. 2009;112(5):2876–87.

Article  CAS  Google Scholar 

Xie Y-T, et al. Brain-targeting study of stearic acid–grafted chitosan micelle drug-delivery system. Int J Nanomed. 2012;7:3235.

CAS  Google Scholar 

Karanth H, Rayasa M. Nanotechnology in brain targeting. Int J Pharm Sci Nanotechnol. 2008;1:10–24.

Google Scholar 

Lo Y-L. Relationships between the hydrophilic–lipophilic balance values of pharmaceutical excipients and their multidrug resistance modulating effect in Caco-2 cells and rat intestines. J Control Release. 2003;90(1):37–48.

Article  CAS  PubMed  Google Scholar 

Claudio P, et al. Drug-delivery nanocarriers to cross the blood–brain barrier. In: Nanobiomaterials in Drug Delivery. Elsevier; 2016. p. 333–70.

Chapter  Google Scholar 

Chen D, et al. The role of apolipoprotein-and vitronectin-enriched protein corona on lipid nanoparticles for in vivo targeted delivery and transfection of oligonucleotides in murine tumor models. Nanoscale. 2019;11(40):18806–24.

Article  CAS  PubMed  Google Scholar 

Sun W, et al. Specific role of polysorbate 80 coating on the targeting of nanoparticles to the brain. Biomaterials. 2004;25(15):3065–71.

Article  CAS  PubMed  Google Scholar 

Tao X, et al. Brain-targeted polysorbate 80-emulsified donepezil drug-loaded nanoparticles for neuroprotection. Nanoscale Res Lett. 2021;16(1):1–15.

Article  Google Scholar 

Calvo P, et al. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci. 1997;63(1):125–32.

Article  CAS  Google Scholar 

Bajaj S, Singla D, Sakhuja N. Stability testing of pharmaceutical products. J Appl Pharm Sci. 2012;129–138.

Tzanova MM, Hagesaether E, Tho I. Solid lipid nanoparticle-loaded mucoadhesive buccal films–critical quality attributes and in vitro safety & efficacy. Int J Pharm. 2021;592: 120100.

Article  CAS  PubMed  Google Scholar 

Masarudin MJ, et al. Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of [14C]-doxorubicin. Nanotechnol Sci Appl. 2015;8:67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hejjaji EM, Smith AM, Morris GA. Evaluation of the mucoadhesive properties of chitosan nanoparticles prepared using different chitosan to tripolyphosphate (CS: TPP) ratios. Int J Biol Macromol. 2018;120:1610–7.

Article  CAS  PubMed  Google Scholar 

Taymouri S, Varshosaz J. Effect of different types of surfactants on the physical properties and stability of carvedilol nano-niosomes. Adv Biomed Res. 2016;5.

Al-Nemrawi N, Alsharif S, Dave R. Preparation of chitosan-TPP nanoparticles: the influence of chitosan polymeric properties and formulation variables. International Journal of Applied Pharmaceutics. 2018;10(5):60–5.

Article  CAS  Google Scholar 

Akbari J, et al. Innovative topical niosomal gel formulation containing diclofenac sodium (niofenac). J Drug Target. 2021;1–38.

Ray S, et al. Polysorbate 80 coated crosslinked chitosan nanoparticles of ropinirole hydrochloride for brain targeting. Journal of Drug Delivery Science and Technology. 2018;48:21–9.

Article  CAS  Google Scholar 

Attia M. Formulation and evaluation of betamethasone sodium phosphate loaded nanoparticles for ophthalmic delivery. J Clin Exp Ophthalmol. 2013;04.

Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci. 2002;6(4):319–27.

Article  CAS  Google Scholar 

Abismaıl B, et al. Emulsification by ultrasound: drop size distribution and stability. Ultrason Sonochem. 1999;6(1–2):75–83.

Article  PubMed  Google Scholar 

Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Trop J Pharm Res. 2013;12(2):265–73.

Google Scholar 

Tang E, Huang M, Lim LY. Ultrasonication of chitosan and chitosan nanoparticles. Int J Pharm. 2003;265(1–2):103–14.

Article  CAS  PubMed  Google Scholar 

Hashemi SMH, et al. Venlafaxine HCl encapsulated in niosome: green and eco-friendly formulation for the management of pain. AAPS PharmSciTech. 2022;23(5):1–14.

Article  Google Scholar 

Pancholi K, Stride E, Edirisinghe M. In vitro method to characterize diffusion of dye from polymeric particles: a model for drug release. Langmuir. 2009;25(17):10007–13.

Article  CAS  PubMed  Google Scholar 

Magenheim B, Levy M, Benita S. A new in vitro technique for the evaluation of drug release profile from colloidal carriers-ultrafiltration technique at low pressure. Int J Pharm. 1993;94(1–3):115–23.

Article  CAS  Google Scholar 

Maji R, et al. Ethyl cellulose microparticles containing metformin HCl by emulsification-solvent evaporation technique: effect of formulation variables. Int Sch Res Notices. 2012;2012.

Ren T, et al. Preparation and therapeutic efficacy of polysorbate-80-coated amphotericin B/PLA-b-PEG nanoparticles. J Biomater Sci Polym Ed. 2009;20(10):1369–80.

Article  CAS  PubMed  Google Scholar 

Morteza-

留言 (0)

沒有登入
gif