Identification of effective plant extracts against candidiasis: an in silico and in vitro approach

Bongomin F, Gago S, Oladele RO, Denning DW (2017) Global and multi-national prevalence of fungal diseases-estimate precision. J Fungi 3(4):57. https://doi.org/10.3390/jof3040057

Article  Google Scholar 

Vazquez JA, Sobel JD (2011) Candidiasis. Essentials of clinical mycology. Springer, New York, pp 167–206. https://doi.org/10.1007/978-1-4419-6640-7_11

Chapter  Google Scholar 

Pappas PG, Rex JH, Lee J, Hamill RJ, Larsen RA, Powderly W, Kauffman CA, Hyslop N, Mangino JE, Chapman S, Horowitz HW, Edwards JE, Dismukes WE, NIAID Mycoses Study Group (2003) A prospective observational study of candidemia: epidemiology, therapy, and influences on mortality in hospitalized adult and pediatric patients. Clin Infect Dis Offic Publ Infect Dis Soc Am 37(5):634–643. https://doi.org/10.1086/376906

Article  Google Scholar 

Fidel PL Jr, Sobel JD (1996) Immunopathogenesis of recurrent vulvovaginal candidiasis. Clin Microbiol Rev 9(3):335–348. https://doi.org/10.1128/CMR.9.3.335

Article  PubMed  PubMed Central  Google Scholar 

Singh A, Verma R, Murari A, Agrawal A (2014) Oral candidiasis: an overview. J Oral Maxillofac Pathol 18(Suppl 1):S81–S85. https://doi.org/10.4103/0973-029X.141325

Article  PubMed  PubMed Central  Google Scholar 

Gow NA, van de Veerdonk FL, Brown AJ, Netea MG (2011) Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Microbiol 10(2):112–122. https://doi.org/10.1038/nrmicro2711

Article  CAS  PubMed  PubMed Central  Google Scholar 

Woolfson AD, Malcolm RK, Gallagher R (2000) Drug delivery by the intravaginal route. Crit Rev Ther Drug Carrier Syst 17(5):509–555

Article  CAS  PubMed  Google Scholar 

Nett JE, Andes DR (2020) Contributions of the biofilm matrix to Candida pathogenesis. J Fungi 6(1):21. https://doi.org/10.3390/jof6010021

Article  CAS  Google Scholar 

LaFleur MD, Kumamoto CA, Lewis K (2006) Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob Agents Chemother 50(11):3839–3846. https://doi.org/10.1128/AAC.00684-06

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barnett SE, Carrillo NAnn (2014) Candidiasis. Equine infectious diseases. WB Saunders, pp 408–411

Chapter  Google Scholar 

Dowd FJ (2014) Candida albicans infections

Samaranayake LP, Ellepola AN (2000) Studying Candida albicans adhesion. Handbook of bacterial adhesion. Humana Press, Totowa, pp 527–540. https://doi.org/10.1007/978-1-59259-224-1_33

Chapter  Google Scholar 

Delaloye J, Calandra T (2014) Invasive candidiasis as a cause of sepsis in the critically ill patient. Virulence 5(1):161–169. https://doi.org/10.4161/viru.26187

Article  PubMed  Google Scholar 

Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ (2018) Invasive candidiasis. Nat Rev Dis Primers 4:18026. https://doi.org/10.1038/nrdp.2018.26

Article  PubMed  Google Scholar 

Yike I (2011) Fungal proteases and their pathophysiological effects. Mycopathologia 171(5):299–323. https://doi.org/10.1007/s11046-010-9386-2

Article  CAS  PubMed  Google Scholar 

Calderone RA, Fonzi WA (2001) Virulence factors of Candida albicans. Trends Microbiol 9(7):327–335. https://doi.org/10.1016/s0966-842x(01)02094-7

Article  CAS  PubMed  Google Scholar 

Schaller M, Korting HC, Schäfer W, Bastert J, Chen W, Hube B (1999) Secreted aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral candidosis. Mol Microbiol 34(1):169–180. https://doi.org/10.1046/j.1365-2958.1999.01590.x

Article  CAS  PubMed  Google Scholar 

Hube B, Sanglard D, Odds FC, Hess D, Monod M, Schäfer W, Brown AJ, Gow NA (1997) Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect Immun 65(9):3529–3538. https://doi.org/10.1128/iai.65.9.3529-3538.1997

Article  CAS  PubMed  PubMed Central  Google Scholar 

Naglik JR, Challacombe SJ, Hube B (2003) Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 67(3):400–428. https://doi.org/10.1128/MMBR.67.3.400-428.2003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Naglik J, Albrecht A, Bader O, Hube B (2004) Candida albicans proteinases and host/pathogen interactions. Cell Microbiol 6(10):915–926. https://doi.org/10.1111/j.1462-5822.2004.00439.x

Article  CAS  PubMed  Google Scholar 

Gropp K, Schild L, Schindler S, Hube B, Zipfel PF, Skerka C (2009) The yeast Candida albicans evades human complement attack by secretion of aspartic proteases. Mol Immunol 47(2–3):465–475. https://doi.org/10.1016/j.molimm.2009.08.019

Article  CAS  PubMed  Google Scholar 

Calderone RA, Clancy CJ (Eds.). (2011). Candida and candidiasis. American Society for Microbiology Press

Pappas PG, Rex JH, Sobel JD, Filler SG, Dismukes WE, Walsh TJ, Edwards JE, Infectious Diseases Society of America (2004) Guidelines for treatment of candidiasis. Clin Infect Dis Offic Publ Infect Dis Soc Am 38(2):161–189. https://doi.org/10.1086/380796

Article  Google Scholar 

Spellberg B, Witt MD, Beck CK (2004) Amphotericin B: is a lipid-formulation gold standard feasible? Clin Infect Dis Offic Publ Infect Dis Soc Am 38(2):304–307. https://doi.org/10.1086/380844

Article  Google Scholar 

Spellberg BJ, Filler SG, Edwards JE Jr (2006) Current treatment strategies for disseminated candidiasis. Clin Infect Dis Offic Publ Infect Dis Soc Am 42(2):244–251. https://doi.org/10.1086/499057

Article  CAS  Google Scholar 

Bouzada ML, Fabri RL, Nogueira M, Konno TU, Duarte GG, Scio E (2009) Antibacterial, cytotoxic and phytochemical screening of some traditional medicinal plants in Brazil. Pharm Biol 47(1):44–52. https://doi.org/10.1080/13880200802411771

Article  CAS  Google Scholar 

Arif T, Bhosale JD, Kumar N, Mandal TK, Bendre RS, Lavekar GS, Dabur R (2009) Natural products–antifungal agents derived from plants. J Asian Nat Prod Res 11(7):621–638. https://doi.org/10.1080/10286020902942350

Article  CAS  PubMed  Google Scholar 

Duraipandiyan V, Ignacimuthu S (2011) Antifungal activity of traditional medicinal plants from Tamil Nadu, India. Asian Pac J Trop Biomed 1(2):S204–S215. https://doi.org/10.1016/S2221-1691(11)60157-3

Article  Google Scholar 

Fathallah N, Raafat MM, Issa MY, Abdel-Aziz MM, Bishr M, Abdelkawy MA, Salama O (2019) Bio-guided fractionation of prenylated benzaldehyde derivatives as potent antimicrobial and antibiofilm from Ammi majus L. fruits-associated Aspergillus amstelodami. Molecules 24(22):4118

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rao PR, Nammi S, Raju ADV (2002) Studies on the antimicrobial activity of Heliotropium indicum Linn. J Nat Rem 2(2):195–198

Google Scholar 

Roy A (2015) Pharmacological activities of Indian Heliotrope (Heliotropium indicum L.): a review. J Pharm Phytochem 4(3):101

CAS  Google Scholar 

Jayaram U, Srivastava N (2016) Ethnopharmacological and phytochemical profile of three potent Desmodium species: Desmodium gangeticum (L.) DC, Desmodium triflorum Linn. and Desmodium triquetrum Linn. J Chem Pharm Res 8(7):91–97

Google Scholar 

Rose PW, Prlić A, Altunkaya A, Bi C, Bradley AR, Christie CH, Costanzo LD, Duarte JM, Dutta S, Feng Z, Green RK, Goodsell DS, Hudson B, Kalro T, Lowe R, Peisach E, Randle C, Rose AS, Shao C, Tao YP, Burley SK (2017) The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res 45(D1):D271–D281. https://doi.org/10.1093/nar/gkw1000

Article  CAS  PubMed  Google Scholar 

Sankararaman S, Sha F, Kirsch JF, Jordan MI, Sjölander K (2010) Active site prediction using evolutionary and structural information. Bioinformatics 26(5):617–624. https://doi.org/10.1093/bioinformatics/btq008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sasikumar AP, Ramaswamy S, Sudhir S (2022) A scientific pharmacognosy on Gaucher’s disease: an in silico analysis. Environ Sci Pollut Res Int 29(17):25308–25317. https://doi.org/10.1007/s11356-021-17534-y

Article  PubMed  Google Scholar 

Sinha S, Patel S, Athar M, Vora J, Chhabria MT, Jha PC, Shrivastava N (2019) Structure-based identification of novel sirtuin inhibitors against triple negative breast cancer: an in silico and in vitro study. Int J Biol Macromol 140:454–468. https://doi.org/10.1016/j.ijbiomac.2019.08.061

Article  CAS  PubMed  Google Scholar 

Vijayakumar S, Manogar P, Prabhu S, Sanjeevkumar Singh RA (2018) Novel ligand-based docking; molecular dynamic simulations; and absorption, distribution, metabolism, and excretion approach to analyzing potential acetylcholinesterase inhibitors for Alzheimer’s disease. J Pharm Anal 8(6):413–420. https://doi.org/10.1016/j.jpha.2017.07.006

Article  PubMed  Google Scholar 

Nurhan AD, Gani MA, Maulana S, Siswodihardjo S, Ardianto C, Khotib J (2022) Molecular docking studies for protein-targeted drug development in SARS-CoV-2. Lett Drug Des Discov 19(5):428–439. https://doi.org/10.2174/1570180818666210512021619

Article  CAS  Google Scholar 

Qikprop, module 4.4 (2012) Schrodinger suite, New York

Yusof I, Segall MD (2013) Considering the impact drug-like properties have on the chance of success. Drug Discov Today 18(13–14):659–666. https://doi.org/10.1016/j.drudis.2013.02.008

Article  CAS  PubMed  Google Scholar 

Filimonov DA, Lagunin AA, Gloriozova TA, Rudik AV, Druzhilovskii DS, Pogodin PV, Poroikov VV (2014) Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem Heterocycl Compd 50(3):444–457. https://doi.org/10.1007/s10593-014-1496-1

Article  CAS 

留言 (0)

沒有登入
gif