Revisiting the role of mesenchymal stem cells in tuberculosis and other infectious diseases

StefaÅska K, Bryl R, Moncrieff L, Pinto N, Shibli JA, Dyszkiewicz-KonwiÅska M. Mesenchymal stem cells- A historical overview. Med J Cell Biol. 2020;8:83–7.

Article  Google Scholar 

Chamberlain G, Fox J, Ashton B, Middleton J, Muller L. Concise Review: Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25:2739–49.

Article  CAS  PubMed  Google Scholar 

Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9:641–50.

Article  CAS  PubMed  Google Scholar 

Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. science 1999;284:143–7.

Article  CAS  PubMed  Google Scholar 

Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci. 1999;96:10711–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 2005;7:393–5.

Article  CAS  PubMed  Google Scholar 

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8:315–7.

Article  CAS  PubMed  Google Scholar 

Caplan AI. What’s in a Name? Tissue Eng - Part A. 2010;16:2415–7.

Article  PubMed  Google Scholar 

Lv FJ, Tuan RS, Cheung KM, Leung VY. Concise Review: The Surface Markers and Identity of Human Mesenchymal Stem Cells. Stem cells. 2014;32:1408–19.

Article  CAS  PubMed  Google Scholar 

Andrzejewska A, Lukomska B, Janowski M. Concise Review: mesenchymal stem cells: From Roots to Boost. Stem Cells. 2019;37:855–64.

Article  PubMed  Google Scholar 

Rodríguez-Fuentes DE, Fernández-Garza LE, Samia-Meza JA, Barrera-Barrera SA, Caplan AI, Barrera-Saldaña HA. Mesenchymal Stem Cells Current Clinical Applications: A Systematic Review. Arch Med Res. 2021;52:93–101.

Article  PubMed  Google Scholar 

Greenbaum A, Hsu Y-MS, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 2013;495:227–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N. Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci. 2019;76:3323–48.

Article  CAS  PubMed  Google Scholar 

Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98:1076–84.

Article  CAS  PubMed  Google Scholar 

Guillamat-Prats R. The role of MSC in wound healing, scarring and regeneration. Cells 2021;10:1729.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fox JM, Chamberlain G, Ashton BA, Middleton J. Recent advances into the understanding of mesenchymal stem cell trafficking. Br J Haematol. 2007;137:491–502.

Article  CAS  PubMed  Google Scholar 

Nitzsche F, Mu¨ller C, Mu¨ller M, Lukomska B, Jolkkonen J, Deten A, et al. Concise Review: MSC Adhesion Cascade-insights into homing and transendothelial migration. Stem cells. 2017;35:1446–60.

Article  PubMed  Google Scholar 

Naji A, Favier B, Deschaseaux F, Rouas-Freiss N, Eitoku M, Suganuma N. Mesenchymal stem/stromal cell function in modulating cell death. Stem Cell Res Ther. 2019;10:1–2.

Article  Google Scholar 

Spees JL, Lee RH, Gregory CA. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res Ther. 2016;7:1–3.

Article  Google Scholar 

Shi Y, Hu G, Su J, Li W, Chen Q, Shou P, et al. Mesenchymal stem cells: A new strategy for immunosuppression and tissue repair. Cell Res. 2010;20:510–8.

Article  CAS  PubMed  Google Scholar 

Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y. Immunobiology of mesenchymal stem cells. Cell Death Differ. 2014;21:216–25.

Article  CAS  PubMed  Google Scholar 

Abumaree M, Al Jumah M, Pace RA, Kalionis B. Immunosuppressive properties of mesenchymal stem cells. Stem Cell Rev Rep. 2012;8:375–92.

Article  CAS  PubMed  Google Scholar 

Global Tuberculosis Report 2022.

Pai M, Behr MA, Dowdy D, Dheda K, Divangahi M, Boehme CC, et al. Tuberculosis(Primer). Nat Rev: Dis Prim. 2016;2:16076.

PubMed  Google Scholar 

Van Crevel R, Ottenhoff TH, Van der Meer JW. Innate immunity to mycobacterium tuberculosis. Clin Microbiol Rev. 2002;15:294–309.

Article  PubMed  PubMed Central  Google Scholar 

Bhattacharya D, Dwivedi VP, Kumar S, Reddy MC, Van Kaer L, Moodley P, et al. Simultaneous inhibition of T helper 2 and T regulatory cell differentiation by small molecules enhances bacillus calmette-guerin vaccine efficacy against tuberculosis. J Biol Chem. 2014;289:33404–11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weiss G, Schaible UE. Macrophage defense mechanisms against intracellular bacteria. Immunol Rev. 2015;264:182–203. Schaible UE

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ernst JD. Mechanisms of M. tuberculosis Immune Evasion as Challenges to TB Vaccine Design. Cell Host Microbe. 2018;24:34–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fatima S, Kamble SS, Dwivedi VP, Bhattacharya D, Kumar S, Ranganathan A, et al. Mycobacterium tuberculosis programs mesenchymal stem cells to establish dormancy and persistence. J Clin Investig. 2020;130:655–61.

Article  CAS  PubMed  Google Scholar 

Gengenbacher M, Kaufmann SH. Mycobacterium tuberculosis: Success through dormancy. FEMS Microbiol Rev. 2012;36:514–32.

Article  CAS  PubMed  Google Scholar 

Raghuvanshi S, Sharma P, Singh S, Van Kaer L, Das G. Mycobacterium tuberculosis evades host immunity by recruiting mesenchymal stem cells. Proc Natl Acad Sci. 2010;107:21653–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Das B, Kashino SS, Pulu I, Kalita D, Swami V, Yeger H, et al. CD271+ bone marrow mesenchymal stem cells may provide a niche for dormant mycobacterium tuberculosis. Sci Transl Med. 2013;5:170ra13.

Article  PubMed  PubMed Central  Google Scholar 

Beamer G, Major S, Das B, Campos-Neto A. Bone marrow mesenchymal stem cells provide an antibiotic-protective niche for persistent viable mycobacterium tuberculosis that survive antibiotic treatment. Am J Pathol. 2014;184:3170–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jain N, Kalam H, Singh L, Sharma V, Kedia S, Das P, et al. Mesenchymal stem cells offer a drug-tolerant and immune-privileged niche to Mycobacterium tuberculosis. Nat Commun 2020;11:3062.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garhyan J, Bhuyan S, Pulu I, Kalita D, Das B, Bhatnagar R. Preclinical and Clinical Evidence of Mycobacterium tuberculosis Persistence in the Hypoxic Niche of Bone Marrow Mesenchymal Stem Cells after Therapy. Am J Pathol. 2015;185:1924–34.

Article  PubMed  Google Scholar 

Khan A, Mann L, Papanna R, Lyu MA, Singh CR, Olson S, et al. Mesenchymal stem cells internalize Mycobacterium tuberculosis through scavenger receptors and restrict bacterial growth through autophagy. Sci Rep. 2017;7:15010.

Article  PubMed  PubMed Central  Google Scholar 

Naik SK, Padhi A, Ganguli G, Sengupta S, Pati S, Das D, et al. Mouse bone marrow Sca-1+ CD44+ mesenchymal stem cells kill avirulent mycobacteria but not Mycobacterium tuberculosis through modulation of cathelicidin expression via the p38 mitogenactivated protein kinase-dependent pathway. Infect Immun. 2017;85:e00471–17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Théry C. Exosomes: Secreted vesicles and intercellular communications. F1000 biol Rep. 2011;3:15.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif