Spotlight on the impact of viral infections on Hematopoietic Stem Cells (HSCs) with a focus on COVID-19 effects

Caiado F, Pietras EM, Manz MG. Inflammation as a regulator of hematopoietic stem cell function in disease, aging, and clonal selection. J Exp Med. 2021;218(7):e20201541.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kolb-Mäurer A, Goebel W. Susceptibility of hematopoietic stem cells to pathogens: role in virus/bacteria tropism and pathogenesis. FEMS Microbiol Lett. 2003;226(2):203–7.

Article  PubMed  Google Scholar 

Bogeska R, et al. Inflammatory exposure drives long-lived impairment of hematopoietic stem cell self-renewal activity and accelerated aging. Cell Stem Cell. 2022;29(8):1273-1284. e8.

Article  CAS  PubMed  Google Scholar 

Chen Z, et al. Molecular regulation of hematopoietic stem cell quiescence. Cell Mol Life Sci. 2022;79(4):1–18.

Article  Google Scholar 

Qiu J, et al. Divisional history and hematopoietic stem cell function during homeostasis. Stem cell reports. 2014;2(4):473–90.

Article  PubMed  PubMed Central  Google Scholar 

Ljungman P. Viral infections in hematopoietic stem cell transplant recipients. In: Allogeneic Stem Cell Transplantation. Springer; 2010. p. 505–32.

Chapter  Google Scholar 

Pascutti MF, Erkelens MN, Nolte MA. Impact of viral infections on hematopoiesis: from beneficial to detrimental effects on bone marrow output. Front Immunol. 2016;7:364.

Article  PubMed  PubMed Central  Google Scholar 

Jackson CB, et al. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 2022;23(1):3–20.

Article  CAS  PubMed  Google Scholar 

Yasamineh S, et al. Spotlight on therapeutic efficiency of mesenchymal stem cells in viral infections with a focus on COVID-19. Stem Cell Res Ther. 2022;13(1):1–23.

Article  Google Scholar 

Yasamineh S, et al. An overview on nanoparticle-based strategies to fight viral infections with a focus on COVID-19. J Nanobiotechnology. 2022;20(1):1–26.

Article  Google Scholar 

Kucia M, et al. An evidence that SARS-Cov-2/COVID-19 spike protein (SP) damages hematopoietic stem/progenitor cells in the mechanism of pyroptosis in Nlrp3 inflammasome-dependent manner. Leukemia. 2021;35(10):3026–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kronstein-Wiedemann R, et al. SARS-CoV-2 Infects red blood cell progenitors and dysregulates hemoglobin and iron metabolism. Stem Cell Rev Rep. 2022:1–13. https://link.springer.com/article/10.1007/s12015-021-10322-8.

Booth C, Gaspar HB, Thrasher AJ. Treating immunodeficiency through HSC gene therapy. Trends Mol Med. 2016;22(4):317–27.

Article  CAS  PubMed  Google Scholar 

Trobridge GD, Kiem H-P. Large animal models of hematopoietic stem cell gene therapy. Gene Ther. 2010;17(8):939–48.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morgan RA, et al. Hematopoietic stem cell gene therapy: progress and lessons learned. Cell Stem Cell. 2017;21(5):574–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kiem H-P, et al. Hematopoietic-stem-cell-based gene therapy for HIV disease. Cell Stem Cell. 2012;10(2):137–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

DiGiusto DL, et al. Development of hematopoietic stem cell based gene therapy for HIV-1 infection: considerations for proof of concept studies and translation to standard medical practice. Viruses. 2013;5(11):2898–919.

Article  PubMed  PubMed Central  Google Scholar 

Wang H, et al. In vivo hematopoietic stem cell gene therapy for SARS-CoV2 infection using a decoy receptor. Hum Gene Ther. 2022;33(7–8):389–403.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ho TT, et al. Aged hematopoietic stem cells are refractory to bloodborne systemic rejuvenation interventions. J Exp Med. 2021;218(7):e20210223.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dignum T, et al. Multipotent progenitors and hematopoietic stem cells arise independently from hemogenic endothelium in the mouse embryo. Cell Rep. 2021;36(11):109675.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar RS, Goyal N. Estrogens as regulator of hematopoietic stem cell, immune cells and bone biology. Life Sci. 2021;269:119091.

Article  CAS  PubMed  Google Scholar 

Chavakis T, Mitroulis I, Hajishengallis G. Hematopoietic progenitor cells as integrative hubs for adaptation to and fine-tuning of inflammation. Nat Immunol. 2019;20(7):802–11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boettcher S, Manz MG. Regulation of inflammation-and infection-driven hematopoiesis. Trends Immunol. 2017;38(5):345–57.

Article  CAS  PubMed  Google Scholar 

Takizawa H, Boettcher S, Manz MG. Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood. 2012;119(13):2991–3002.

Article  CAS  PubMed  Google Scholar 

de Laval B, et al. C/EBPβ-dependent epigenetic memory induces trained immunity in hematopoietic stem cells. Cell Stem Cell. 2020;26(5):657-674. e8.

Article  PubMed  Google Scholar 

Sugiyama T, Omatsu Y, Nagasawa T. Niches for hematopoietic stem cells and immune cell progenitors. Int Immunol. 2019;31(1):5–11.

Article  CAS  PubMed  Google Scholar 

Khavinson VK, et al. Results and prospects of using activator of hematopoietic stem cell differentiation in complex therapy for patients with COVID-19. Stem Cell Rev Rep. 2021;17(1):285–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cordonnier C, et al. Vaccination of haemopoietic stem cell transplant recipients: guidelines of the 2017 European Conference on Infections in Leukaemia (ECIL 7). Lancet Infect Dis. 2019;19(6):e200–12.

Article  PubMed  Google Scholar 

Drysdale CM, Tisdale JF, Uchida N. Immunoresponse to gene-modified hematopoietic stem cells. Mol Ther Methods Clin Dev. 2020;16:42–9.

Article  CAS  PubMed  Google Scholar 

Einsele H, Ljungman P, Boeckh M. How I treat CMV reactivation after allogeneic hematopoietic stem cell transplantation. Blood. 2020;135(19):1619–29.

Article  PubMed  PubMed Central  Google Scholar 

Sedighi S, et al. Comprehensive Investigations relationship between viral infections and multiple sclerosis pathogenesis. Curr Microbiol. 2023;80(1):15.

Article  CAS  Google Scholar 

Cho S-Y, Lee D-G, Kim H-J. Cytomegalovirus infections after hematopoietic stem cell transplantation: current status and future immunotherapy. Int J Mol Sci. 2019;20(11):2666.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stern L, et al. Human cytomegalovirus latency and reactivation in allogeneic hematopoietic stem cell transplant recipients. Front Microbiol. 2019;10:1186.

Article  PubMed  PubMed Central  Google Scholar 

Bollard CM, Heslop HE. T cells for viral infections after allogeneic hematopoietic stem cell transplant. Blood. 2016;127(26):3331–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van Genechten T, et al. Successful Treatment of Adenovirus Infection with Brincidofovir in an Immunocompromised Patient after Hematological Stem Cell Transplantation. Case Rep Infect Dis. 2020;2020:5981289.

PubMed  PubMed Central  Google Scholar 

Lanier R, et al. Development of CMX001 for the treatment of poxvirus infections. Viruses. 2010;2(12):2740–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fujimoto A, Suzuki R. Epstein-Barr virus-associated post-transplant lymphoproliferative disorders after hematopoietic stem cell transplantation: pathogenesis, risk factors and clinical outcomes. Cancers. 2020;12(2):328.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Onda Y, et al. Possible nosocomial transmission of virus-associated hemorrhagic cystitis after allogeneic hematopoietic stem cell transplantation. Ann Hematol. 2021;100(3):753–61.

Article  CAS  PubMed  Google Scholar 

Chen L, Ozato K. Innate immune memory in hematopoietic stem/progenitor cells: Myeloid-biased differentiation and the role of interferon. Front Immunol. 2021;12:621333.

留言 (0)

沒有登入
gif