Urinary 1-hydroxypyrene in pregnant women in a Northeastern U.S. city: socioeconomic disparity and contributions from air pollution sources

Perera FP, Rauh V, Tsai WY, Kinney P, Camann D, Barr D, et al. Effects of transplacental exposure to environmental pollutants on birth outcomes in a multiethnic population. Environ Health Perspect. 2003;111:201–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilhelm M, Ghosh JK, Su J, Cockburn M, Jerrett M, Ritz B. Traffic-related air toxics and preterm birth: a population-based case-control study in Los Angeles county. Calif Environ Heal. 2011;10:89.

Article  CAS  Google Scholar 

Ferguson KK, McElrath T, Pace GG, Weller D, Zeng L, Pennathur S, et al. Urinary polycyclic aromatic hydrocarbon metabolite associations with biomarkers of inflammation, angiogenesis, and oxidative stress in pregnant women. Environ Sci Technol. 2017;acs.est.7b01252.

Cathey AL, Watkins DJ, Rosario ZY, Vélez Vega CM, Loch-Caruso R, Alshawabkeh AN, et al. Polycyclic aromatic hydrocarbon exposure results in altered CRH, reproductive, and thyroid hormone concentrations during human pregnancy. Sci Total Environ. 2020;749:141581.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi H, Rauh V, Garfinkel R, Tu Y, Perera FP. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and risk of intrauterine growth restriction. Environ Health Perspect. 2008;116:658–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bongaerts E, Nawrot TS, Van Pee T, Ameloot M, Bové H. Translocation of (ultra)fine particles and nanoparticles across the placenta; a systematic review on the evidence of in vitro, ex vivo, and in vivo studies. Part Fibre Toxicol. 2020;17:56.

Article  PubMed  PubMed Central  Google Scholar 

Bové H, Bongaerts E, Slenders E, Bijnens EM, Saenen ND, Gyselaers W, et al. Ambient black carbon particles reach the fetal side of human placenta. Nat Commun. 2019;10:3866.

Article  PubMed  PubMed Central  Google Scholar 

Yuan Y, Jin L, Wang L, Li Z, Zhang L, Zhu H, et al. Levels of PAH-DNA adducts in placental tissue and the risk of fetal neural tube defects in a Chinese population. Reprod Toxicol. 2013;37:70–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ren A, Qiu X, Jin L, Ma J, Li Z, Zhang L, et al. Association of selected persistent organic pollutants in the placenta with the risk of neural tube defects. Proc Natl Acad Sci USA. 2011;108:12770–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim KH, Jahan SA, Kabir E, Brown RJC. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int. 2013;60:71–80.

Article  CAS  PubMed  Google Scholar 

Strickland P, Kang D, Sithisarankul P. Polycyclic aromatic hydrocarbon metabolites in urine as biomarkers of exposure and effect. Environ Health Perspect. 1996;104:927–32.

CAS  PubMed  PubMed Central  Google Scholar 

Poursafa P, Amin MM, Hajizadeh Y, Mansourian M, Pourzamani H, Ebrahim K, et al. Association of atmospheric concentrations of polycyclic aromatic hydrocarbons with their urinary metabolites in children and adolescents. Environ Sci Pollut Res. 2017;24:17136–44.

Article  CAS  Google Scholar 

Gong J, Zhu T, Kipen H, Rich DQ, Huang W, Lin WT, et al. Urinary polycyclic aromatic hydrocarbon metabolites as biomarkers of exposure to traffic-emitted pollutants. Environ Int. 2015;85:104–10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Llop S, Ballester F, Estarlich M, Ibarluzea J, Manrique A, Rebagliato M, et al. Urinary 1-hydroxypyrene, air pollution exposure and associated life style factors in pregnant women. Sci Total Environ. 2008;407:97–104.

Article  CAS  PubMed  Google Scholar 

Gearhart-Serna LM, Tacam M, Slotkin TA, Devi GR. Analysis of polycyclic aromatic hydrocarbon intake in the US adult population from NHANES 2005–2014 identifies vulnerable subpopulations, suggests interaction between tobacco smoke exposure and sociodemographic factors. Environ Res. 2021;201:111614.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cathey A, Ferguson KK, McElrath TF, Cantonwine DE, Pace G, Alshawabkeh A, et al. Distribution and predictors of urinary polycyclic aromatic hydrocarbon metabolites in two pregnancy cohort studies. Environ Pollut. 2018;232:556–62.

Article  CAS  PubMed  Google Scholar 

Salami F, Hajizadeh Y, Yadegarfar G, Ebrahimpour K, Pourzamani H, Poursafa P. Urinary levels of PAH metabolites in pregnant women and their correlation with sociodemographic factors and PM2.5 exposure in an urban and a suburban area. Air Qual Atmos Heal. 2021;14:653–65.

Article  CAS  Google Scholar 

Zhu J, Zhao X, Yang M, Zheng B, Sun C, Zou X, et al. Levels of urinary metabolites of benzene compounds, trichloroethylene, and polycyclic aromatic hydrocarbons and their correlations with socioeconomic, demographic, dietary factors among pregnant women in six cities of China. Environ Sci Pollut Res. 2022;29:6278–93.

Article  CAS  Google Scholar 

Liu J, Clark LP, Bechle MJ, Hajat A, Kim SY, Robinson AL, et al. Disparities in Air Pollution Exposure in the United States by Race/Ethnicity and Income, 1990-2010. Environ Health Perspect. 2021;129:127005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hajat A, Hsia C, O’Neill MS. Socioeconomic Disparities and Air Pollution Exposure: a Global Review. Curr Environ Heal Rep. 2015;2:440–50.

Article  CAS  Google Scholar 

O’Connor T, Best M, Brunner J, Ciesla AA, Cunning A, Kapula N, et al. Cohort profile: Understanding Pregnancy Signals and Infant Development (UPSIDE): A pregnancy cohort study on prenatal exposure mechanisms for child health. BMJ Open. 2021;11:e044798.

Article  PubMed  PubMed Central  Google Scholar 

Kuiper JR, O’Brien KM, Ferguson KK, Buckley JP. Urinary specific gravity measures in the U.S. population: Implications for the adjustment of non-persistent chemical urinary biomarker data. Environ Int. 2021;156:106656.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vollmar AKR, Rattray NJW, Cai Y, Santos-Neto ÁJ, Deziel NC, Jukic AMZ, et al. Normalizing untargeted periconceptional urinary metabolomics data: A comparison of approaches. Metabolites. 2019;9:198.

Article  CAS  Google Scholar 

Wang Y, Hopke PK, Xia X, Rattigan OV, Chalupa DC, Utell MJ. Source apportionment of airborne particulate matter using inorganic and organic species as tracers. Atmos Environ. 2012;55:525–32.

Article  CAS  Google Scholar 

Wang Y, Hopke PK, Rattigan OV, Chalupa DC, Utell MJ. Multiple-year black carbon measurements and source apportionment using Delta-C in Rochester, New York. J Air Waste Manag Assoc. 2012;62:880–7.

Article  CAS  PubMed  Google Scholar 

Hooper D, Coughlan J, Mullen MR. Structural equation modelling: Guidelines for determining model fit. Electron J Bus Res Methods. 2008;6:53–60.

Google Scholar 

Dominici F, Schwartz J, Di Q, Braun D, Choirat C, Zanobetti A. Assessing Adverse Health Effects of Long-Term Exposure to Low Levels of Ambient Air Pollution: Phase 1. Res Rep. Health Eff Inst. 2019;2022:1–51.

Google Scholar 

Di Q, Wang Y, Zanobetti A, Wang Y, Koutrakis P, Choirat C, et al. Air Pollution and Mortality in the Medicare Population. N Engl J Med. 2017;376:2513–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

John EM, Koo J, Ingles SA, Keegan TH, Nguyen JT, Thomsen C, et al. Predictors of urinary polycyclic aromatic hydrocarbon metabolites in girls from the San Francisco Bay Area. Environ Res. 2022;205:112534.

Article  CAS  PubMed  Google Scholar 

Shahsavani S, Fararouei M, Soveid M, Dehghani M, Hoseini M. Exposure to polycyclic aromatic hydrocarbon-induced oxidative stress in Shiraz, Iran: urinary levels, health risk assessment and mediation effect of MDA on the risk of metabolic syndromes. Int Arch Occup Environ Health. 2022;95:1043–58.

Article  CAS  PubMed  Google Scholar 

Fernández SF, Pardo O, Hernández CS, Garlito B, Yusà V. Children’s exposure to polycyclic aromatic hydrocarbons in the Valencian Region (Spain): Urinary levels, predictors of exposure and risk assessment. Environ Int. 2021;153:106535.

Article  PubMed  Google Scholar 

Thai PK, Banks APW, Toms LML, Choi PM, Wang X, Hobson P, et al. Analysis of urinary metabolites of polycyclic aromatic hydrocarbons and cotinine in pooled urine samples to determine the exposure to PAHs in an Australian population. Environ Res. 2020;182:109048.

Article  CAS  PubMed  Google Scholar 

Liu S, Liu Q, Ostbye T, Story M, Deng X, Chen Y, et al. Levels and risk factors for urinary metabolites of polycyclic aromatic hydrocarbons in children living in Chongqing, China. Sci Total Environ. 2017;598:553–61.

Article  CAS  PubMed  Google Scholar 

Chen YT, Huang YK, Luvsan ME, Gombojav E, Ochir C, Bulgan J, et al. The influence of season and living environment on children’s urinary 1-hydroxypyrene levels in Ulaanbaatar, Mongolia. Environ Res. 2015;137:170–5.

Article  CAS  PubMed  Google Scholar 

Zhang YJ, Huang C, Lv YS, Ma SX, Guo Y, Zeng EY. Polycyclic aromatic hydrocarbon exposure, oxidative potential in dust, and their relationships to oxidative stress in human body: A case study in the indoor environment of Guangzhou, South China. Environ Int. 2021;149:106405.

Article  CAS  PubMed  Google Scholar 

Alhamdow A, Zettergren A, Kull I, Hallberg J, Andersson N, Ekström S, et al. Low-level exposure to polycyclic aromatic hydrocarbons is associated with reduced lung function among Swedish young adults. Environ Res. 2021;197:111169.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif