Analysis of electrical stimulation and voluntary muscle contraction on skeletal muscle oxygen uptake and mitochondrial recovery using near-infrared spectroscopy

Adams GR, Harris RT, Woodard D, Dudley GA (1993) Mapping of electrical muscle stimulation using MRI. J Appl Physiol 74:532–537. https://doi.org/10.1152/jappl.1993.74.2.532

Article  CAS  PubMed  Google Scholar 

Barss TS, Ainsley EN, Claveria-Gonzalez FC et al (2018) Utilizing physiological principles of motor unit recruitment to reduce fatigability of electrically-evoked contractions: a narrative review. Arch Phys Med Rehabil 99:779–791. https://doi.org/10.1016/j.apmr.2017.08.478

Article  PubMed  Google Scholar 

Baumbach SF, Brumann M, Binder J et al (2014) The influence of knee position on ankle dorsiflexion - a biometric study. BMC Musculoskelet Disord 15:246. https://doi.org/10.1186/1471-2474-15-246

Article  PubMed  PubMed Central  Google Scholar 

Bergström M, Hultman E (1988) Energy cost and fatigue during intermittent electrical stimulation of human skeletal muscle. J Appl Physiol 65:1500–1505. https://doi.org/10.1152/jappl.1988.65.4.1500

Article  PubMed  Google Scholar 

Bickel CS, Gregory CM, Dean JC (2011) Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal. Eur J Appl Physiol 111:2399. https://doi.org/10.1007/s00421-011-2128-4

Article  PubMed  Google Scholar 

Brizendine JT, Ryan TE, Larson RD, McCULLY KK (2013) Skeletal muscle metabolism in endurance athletes with near-infrared spectroscopy. Med Sci Sports Exerc 45:869–875. https://doi.org/10.1249/MSS.0b013e31827e0eb6

Article  CAS  PubMed  Google Scholar 

Dreibati B, Lavet C, Pinti A, Poumarat G (2010) Influence of electrical stimulation frequency on skeletal muscle force and fatigue. Ann Phys Rehabil Med 53(266–271):271–277. https://doi.org/10.1016/j.rehab.2010.03.004

Article  Google Scholar 

Gregory CM, Bickel CS (2005) Recruitment patterns in human skeletal muscle during electrical stimulation. Phys Ther 85:358–364

Article  PubMed  Google Scholar 

Groennebaek T, Jespersen NR, Jakobsgaard JE et al (2018) Skeletal muscle mitochondrial protein synthesis and respiration increase with low-load blood flow restricted as well as high-load resistance training. Front Physiol 9:1796. https://doi.org/10.3389/fphys.2018.01796

Article  PubMed  PubMed Central  Google Scholar 

Hamaoka T, McCully KK (2019) Review of early development of near-infrared spectroscopy and recent advancement of studies on muscle oxygenation and oxidative metabolism. J Physiol Sci 69:799–811. https://doi.org/10.1007/s12576-019-00697-2

Article  CAS  PubMed  Google Scholar 

Haseler LJ, Hogan MC (1999) Richardson RS Skeletal muscle phosphocreatine recovery in exercise-trained humans is dependent on O2 availability. J Appl Physiol 86:2013–2018. https://doi.org/10.1152/jappl.1999.86.6.2013

Article  CAS  PubMed  Google Scholar 

Hogan MC, Ingham E, Kurdak SS (1998) Contraction duration affects metabolic energy cost and fatigue in skeletal muscle. Am J Physiol 274:E397-402. https://doi.org/10.1152/ajpendo.1998.274.3.E397

Article  CAS  PubMed  Google Scholar 

Hunter GR, Newcomer BR, Larson-Meyer DE et al (2001) Muscle metabolic economy is inversely related to exercise intensity and type II myofiber distribution. Muscle Nerve 24:654–661. https://doi.org/10.1002/mus.1051

Article  CAS  PubMed  Google Scholar 

Jubeau M, Lee Fur Y, Duhamel G et al (2015) Localized metabolic and t2 changes induced by voluntary and evoked contractions. Med Sci Sports Exerc 47:921–930. https://doi.org/10.1249/MSS.0000000000000491

Article  CAS  PubMed  Google Scholar 

Lagerwaard B, Keijer J, McCully KK et al (2019) In vivo assessment of muscle mitochondrial function in healthy, young males in relation to parameters of aerobic fitness. Eur J Appl Physiol 119:1799–1808. https://doi.org/10.1007/s00421-019-04169-8

Article  PubMed  PubMed Central  Google Scholar 

Lagerwaard B, Nieuwenhuizen AG, de Boer VCJ, Keijer J (2019) In vivo assessment of mitochondrial capacity using nirs in locomotor muscles of young and elderly males with similar physical activity levels. GeroScience 42:299–310. https://doi.org/10.1007/s11357-019-00145-4

Article  PubMed  PubMed Central  Google Scholar 

Layec G, Blain GM, Rossman MJ et al (2018) Acute high-intensity exercise impairs skeletal muscle respiratory capacity. Med Sci Sports Exerc 50:2409–2417. https://doi.org/10.1249/MSS.0000000000001735

Article  PubMed  PubMed Central  Google Scholar 

May S, Locke S, Kingsley M (2021) Reliability of ultrasonographic measurement of muscle architecture of the gastrocnemius medialis and gastrocnemius lateralis. PLoS ONE 16:e0258014. https://doi.org/10.1371/journal.pone.0258014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meyer PH, Missao ET, McCully K (2021) Muscle oxidative capacity in the arms and legs of various types of endurance trained athletes. Med Res Arch. https://doi.org/10.18103/mra.v9i7.2505

Article  Google Scholar 

Paternoster FK, Seiberl W (2022) Comparison of different approaches estimating skeletal muscle oxygen consumption using continuous-wave near-infrared spectroscopy at a submaximal contraction level—a comparative study. Appl Sci 12:2272. https://doi.org/10.3390/app12052272

Article  CAS  Google Scholar 

Piiper J, Spiller P (1970) Repayment of O2 debt and resynthesis of high-energy phosphates in gastrocnemius muscle of the dog. J Appl Physiol. https://doi.org/10.1152/jappl.1970.28.5.657

Article  PubMed  Google Scholar 

Porter C, Reidy PT, Bhattarai N et al (2015) Resistance exercise training alters mitochondrial function in human skeletal muscle. Med Sci Sports Exerc 47:1922–1931. https://doi.org/10.1249/MSS.0000000000000605

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ryan TE, Erickson ML, Brizendine JT et al (2012) Noninvasive evaluation of skeletal muscle mitochondrial capacity with near-infrared spectroscopy: correcting for blood volume changes. J Appl Physiol 113:175–183. https://doi.org/10.1152/japplphysiol.00319.2012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ryan TE, Brizendine JT, McCully KK (2013) A comparison of exercise type and intensity on the noninvasive assessment of skeletal muscle mitochondrial function using near-infrared spectroscopy. J Appl Physiol 114:230–237. https://doi.org/10.1152/japplphysiol.01043.2012

Article  PubMed  Google Scholar 

Ryan TE, Southern WM, Reynolds MA, McCully KK (2013) A cross-validation of near-infrared spectroscopy measurements of skeletal muscle oxidative capacity with phosphorus magnetic resonance spectroscopy. J Appl Physiol 115:1757–1766. https://doi.org/10.1152/japplphysiol.00835.2013

Article  PubMed  PubMed Central  Google Scholar 

Söderlund K, Greenhaff PL, Hultman E (1992) Energy metabolism in type I and type II human muscle fibres during short term electrical stimulation at different frequencies. Acta Physiol Scand 144:15–22. https://doi.org/10.1111/j.1748-1716.1992.tb09262.x

Article  PubMed  Google Scholar 

Spriet LL, Soderlund K, Hultman E (1988) Energy cost and metabolic regulation during intermittent and continuous tetanic contractions in human skeletal muscle. Can J Physiol Pharmacol 66:134–139. https://doi.org/10.1139/y88-024

Article  CAS  PubMed  Google Scholar 

Theurel J, Lepers R, Pardon L, Maffiuletti NA (2007) Differences in cardiorespiratory and neuromuscular responses between voluntary and stimulated contractions of the quadriceps femoris muscle. Respir Physiol Neurobiol 157:341–347. https://doi.org/10.1016/j.resp.2006.12.002

Article  PubMed  Google Scholar 

Vanderthommen M, Gilles R, Carlier P et al (1999) Human muscle energetics during voluntary and electrically induced isometric contractions as measured by 31P NMR spectroscopy. Int J Sports Med 20:279–283. https://doi.org/10.1055/s-2007-971131

Article  CAS  PubMed  Google Scholar 

Vanderthommen M, Duteil S, Wary C et al (2003) A comparison of voluntary and electrically induced contractions by interleaved 1H- and 31P-NMRS in humans. J Appl Physiol 94:1012–1024. https://doi.org/10.1152/japplphysiol.00887.2001

Article  CAS  PubMed  Google Scholar 

Vromans M, Faghri P (2017) Electrical stimulation frequency and skeletal muscle characteristics: effects on force and fatigue. Eur J Transl Myol 27:6816. https://doi.org/10.4081/ejtm.2017.6816

Article  PubMed  PubMed Central  Google Scholar 

Wegrzyk J, Fouré A, Fur YL et al (2015) Responders to wide-pulse, high-frequency neuromuscular electrical stimulation show reduced metabolic demand: a 31p-mrs study in humans. PLoS ONE 10:e0143972. https://doi.org/10.1371/journal.pone.0143972

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif