Tumor immune microenvironment (TIME) to enhance antitumor immunity

Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12(1):31–46.

Article  CAS  PubMed  Google Scholar 

Baghban R, Roshangar L, Jahanban-Esfahlan R, et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal. 2020;18:59. https://doi.org/10.1186/s12964-020-0530-4.

Article  PubMed  PubMed Central  Google Scholar 

McCarthy EF. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J. 2006;26:154–8.

PubMed  PubMed Central  Google Scholar 

Lurquin C, Van Pel A, Mariamé B, De Plaen E, Szikora JP, Janssens C, Reddehase MJ, Lejeune J, Boon T. Structure of the gene of tum-transplantation antigen P91A: the mutated exon encodes a peptide recognized with Ld by cytolytic T cells. Cell. 1989;58(2):293–303. https://doi.org/10.1016/0092-8674(89)90844-1.

Article  CAS  PubMed  Google Scholar 

Foley EJ. Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin. Cancer Res. 1953;13(12):835–7.

CAS  PubMed  Google Scholar 

Gentles AJ, Newman AM, Liu CL, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med. 2015;21(8):938–45. https://doi.org/10.1038/nm.3909. (Epub 2015 July 20).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Binnewies M, Roberts EW, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24(5):541–50. https://doi.org/10.1038/s41591-018-0014-x. (Epub 2018 Apr 23).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vivier E, Raulet DH, Moretta A, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331(6013):44–9. https://doi.org/10.1126/science.1198687.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cachot A, Bilous M, Liu YC, et al. Tumor-specific cytolytic CD4 T cells mediate immunity against human cancer. Sci Adv. 2021;7(9): eabe3348. https://doi.org/10.1126/sciadv.abe3348.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reissfelder C, Stamova S, Gossmann C, et al. Tumor-specific cytotoxic T lymphocyte activity determines colorectal cancer patient prognosis [published correction appears in J Clin Invest. 2015;125(3):1364]. J Clin Invest. 2015;125(2):739–51. https://doi.org/10.1172/JCI74894.

Article  PubMed  Google Scholar 

Tian C, Lu S, Fan Q, et al. Prognostic significance of tumor-infiltrating CD8+ or CD3+ T lymphocytes and interleukin-2 expression in radically resected non-small cell lung cancer. Chin Med J. 2015;128(1):105–10. https://doi.org/10.4103/0366-6999.147828.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan Y, Zhu Z, Lan Y, et al. Development and validation of a CD8+ T cell infiltration-related signature for melanoma patients. Front Immunol. 2021;12: 659444. https://doi.org/10.3389/fimmu.2021.659444.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer. 2014;14(2):135–46. https://doi.org/10.1038/nrc3670.

Article  CAS  PubMed  Google Scholar 

Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer immune evasion through loss of MHC class I antigen presentation. Front Immunol. 2021;12: 636568. https://doi.org/10.3389/fimmu.2021.636568.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zarychta E, Ruszkowska-Ciastek B. Cooperation between angiogenesis, vasculogenesis, chemotaxis, and coagulation in breast cancer metastases development: pathophysiological point of view. Biomedicines. 2022;10(2):300. https://doi.org/10.3390/biomedicines10020300.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holmgaard RB, Zamarin D, Li Y, Gasmi B, Munn DH, Allison JP, Merghoub T, Wolchok JD. Tumor-expressed IDO recruits and activates MDSCs in a Treg-dependent manner. Cell Rep. 2015;13(2):412–24. https://doi.org/10.1016/j.celrep.2015.08.077. (Epub 2015 Sep 24).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14(7):399–416. https://doi.org/10.1038/nrclinonc.2016.217. (Epub 2017 Jan 24).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dysthe M, Parihar R. Myeloid-derived suppressor cells in the tumor microenvironment. Adv Exp Med Biol. 2020;1224:117–40. https://doi.org/10.1007/978-3-030-35723-8_8.

Article  CAS  PubMed  Google Scholar 

van Dalen FJ, van Stevendaal MHME, Fennemann FL, et al. Molecular repolarisation of tumour-associated macrophages. Molecules. 2018;24(1):9. https://doi.org/10.3390/molecules24010009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mok TSK, Wu YL, Kudaba I, KEYNOTE-042 Investigators, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet. 2019;393(10183):1819–30. https://doi.org/10.1016/S0140-6736(18)32409-7. (Epub 2019 Apr 4).

Article  CAS  PubMed  Google Scholar 

Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019;381(16):1535–46. https://doi.org/10.1056/NEJMoa1910836. (Epub 2019 Sep 28).

Article  CAS  PubMed  Google Scholar 

O’Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol. 2019;16:151–67.

Article  PubMed  Google Scholar 

Tutt AL, O’Brien L, Hussain A, et al. T cell immunity to lymphoma following treatment with anti-CD40 monoclonal antibody. J Immunol. 2002;168(6):2720–8. https://doi.org/10.4049/jimmunol.168.6.2720.

Article  CAS  PubMed  Google Scholar 

vanKooten C, Banchereau J. CD40-CD40 ligand. J Leukoc Biol. 2000;67(1):2–17. https://doi.org/10.1002/jlb.67.1.2.

Article  CAS  Google Scholar 

Weiss S, Sznol M, Shaheen M, et al. 389 Phase II of CD40 agonistic antibody sotigalimab (APX005M) in combination with nivolumab in subjects with metastatic melanoma with confirmed disease progression on anti-PD-1 therapy. J ImmunoTherapy Cancer. 2021. https://doi.org/10.1136/jitc-2021-SITC2021.389.

Article  Google Scholar 

American Association for Cancer Research. A CD40 agonistic antibody shows signs of efficacy in pancreatic cancer. Cancer Discov. 2021;11(3):OF7. https://doi.org/10.1158/2159-8290.CD-RW2021-006.

Article  Google Scholar 

Hegde PS, Chen DS. Top 10 challenges in cancer immunotherapy. Immunity. 2020;52(1):17–35. https://doi.org/10.1016/j.immuni.2019.12.011.

Article  CAS  PubMed  Google Scholar 

Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10.

Article  PubMed  Google Scholar 

Geuijen C, Tacken P, Wang LC, Klooster R, et al. A human CD137×PD-L1 bispecific antibody promotes anti-tumor immunity via context-dependent T cell costimulation and checkpoint blockade. Nat Commun. 2021;12(1):4445. https://doi.org/10.1038/s41467-021-24767-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cannarile MA, Weisser M, Jacob W, et al. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer. 2017;5(1):53. https://doi.org/10.1186/s40425-017-0257-y.

Article  PubMed  PubMed Central  Google Scholar 

Song JS, Chang CC, Wu CH, et al. A highly selective and potent CXCR4 antagonist for hepatocellular carcinoma treatment. Proc Natl Acad Sci USA. 2021;118(13): e2015433118. https://doi.org/10.1073/pnas.2015433118.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng Y, Mu R, Wang Z, et al. A toll-like receptor agonist mimicking microbial signal to generate tumor-suppressive macrophages. Nat Commun. 2019;10(1):2272. https://doi.org/10.1038/s41467-019-10354-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schürch CM, Roelli MA, Forster S, et al. Targeting CD47 in anaplastic thyroid carcinoma enhances tumor phagocytosis by macrophages and is a promising therapeutic strategy. Thyroid. 2019;29(7):979–92. https://doi.org/10.1089/thy.2018.0555. (Epub 2019 May 10).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Felip E, Brunsvig P, Vinolas N, et al. A phase II study of bemcentinib (BGB324), a first-in-class highly selective AXL inhibitor, with pembrolizumab in pts with advanced NSCLC: OS for stage I and preliminary stage II efficacy. J Clin Oncol. 2019;37(15_suppl):9098–9098.

Article  Google Scholar 

留言 (0)

沒有登入
gif