Association between adherence to a low carbohydrate dietary (LCD) pattern with breast milk characteristics and oxidative markers in infants’ urine: a cross-sectional study

Ríos J, Valero-Jara V, Thomas-Valdés S. Phytochemicals in breast milk and their benefits for infants. Crit Rev Food Sci Nutr. 2021;62:1–16.

Google Scholar 

WH Organization. Guideline: protecting, promoting and supporting breastfeeding in facilities providing maternity and newborn services. Washington: World Health Organization; 2017.

Google Scholar 

Lawrence RM. Host-resistance factors and immunologic significance of human milk. In: Breastfeeding. Elsevier; 2022. p. 145–92.

Chapter  Google Scholar 

Dror D, Allen L. Overview of nutrients in human milk. Adv Nutr. 2018;9(1):278S-294S.

Article  PubMed  PubMed Central  Google Scholar 

Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet. 1994;344(8924):721–4.

Article  CAS  PubMed  Google Scholar 

Fridovich I. Oxygen toxicity: a radical explanation. J Exp Biol. 1998;201(8):1203–9.

Article  CAS  PubMed  Google Scholar 

Birben E, et al. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9–19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buonocore G, et al. Oxidative stress in preterm neonates at birth and on the seventh day of life. Pediatr Res. 2002;52(1):46–9.

Article  CAS  PubMed  Google Scholar 

Aceti A, et al. Oxidative stress and necrotizing enterocolitis: Pathogenetic mechanisms, opportunities for intervention, and role of human milk. Oxid Med Cell Longev. 2018;2018:7397659.

Article  PubMed  PubMed Central  Google Scholar 

Bracci G. Free radicals and brain damage in the newborn. Biol Neonate. 2001;79:180–6.

Article  PubMed  Google Scholar 

Li W, et al. Evaluation of antioxidant capacity and aroma quality of breast milk. Nutrition. 2009;25(1):105–14.

Article  PubMed  Google Scholar 

Lembo C, Buonocore G, Perrone S. Oxidative stress in preterm newborns. Antioxidants. 2021;10(11):1672.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sánchez-Hernández S, et al. Study of the phenolic compound profile and antioxidant activity of human milk from Spanish women at different stages of lactation: a comparison with infant formulas. Food Res Int. 2021;141:110149.

Article  PubMed  Google Scholar 

Akhoundan M, et al. The association of bread and rice with metabolic factors in type 2 diabetic patients. PLoS ONE. 2016;11(12):e0167921.

Article  PubMed  PubMed Central  Google Scholar 

Bao W, et al. Low carbohydrate–diet scores and long-term risk of type 2 diabetes among women with a history of gestational diabetes mellitus: a prospective cohort study. Diabetes Care. 2016;39(1):43–9.

Article  CAS  PubMed  Google Scholar 

Bando H. Useful tips for actual low carbohydrate diet (LCD) with super-, standard-and petit-LCD methods. EC Nutrition. 2020;15(5):1–4.

Google Scholar 

Chen Y, et al. Association of the low-carbohydrate dietary pattern with postpartum weight retention in women. Food Funct. 2021;12(21):10764–72.

Article  CAS  PubMed  Google Scholar 

Maritim AC, Sanders A, Watkins Iii JB. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol. 2003;17(1):24–38.

Article  CAS  PubMed  Google Scholar 

Strath LJ, et al. The effect of low-carbohydrate and low-fat diets on pain in individuals with knee osteoarthritis. Pain Med. 2020;21(1):150–60.

Article  PubMed  Google Scholar 

Macedo RC, et al. Low-carbohydrate diets: Effects on metabolism and exercise—a comprehensive literature review. Clinical Nutrition ESPEN. 2020;40:17–26.

Article  PubMed  Google Scholar 

Cervera P, Ngo J. Dietary guidelines for the breast-feeding woman. Public Health Nutr. 2001;4(6a):1357–62.

Article  CAS  PubMed  Google Scholar 

Bahrami A, et al. The relationship between adherence to a dietary approach to stop hypertension diet with oxidative stress and antioxidant capacity in young women. Turk J Endocrinol Metab. 2022;26(3):141–7.

Article  Google Scholar 

Ahmadnezhad M, et al. Validation of a short semi-quantitative food frequency questionnaire for adults: a pilot study. J Nutr Sci Diet. 2017;3:49–55.

Google Scholar 

Jafari-Maram S, et al. Association of low-carbohydrate diet score with overweight, obesity and cardiovascular disease risk factors: a cross-sectional study in Iranian women. J Cardiovasc Thoracic Res. 2019;11(3):216.

Article  Google Scholar 

Shirani F, et al. Low-carbohydrate-diet score and metabolic syndrome: an epidemiologic study among Iranian women. Nutrition. 2015;31(9):1124–30.

Article  CAS  PubMed  Google Scholar 

Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996;239(1):70–6.

Article  CAS  PubMed  Google Scholar 

Zhong Y, Shahidi F. Methods for the assessment of antioxidant activity in foods. In: Handbook of antioxidants for food preservation. Elsevier; 2015. p. 287–333.

Chapter  Google Scholar 

Choudhary M, Chandel S, Giri A. Evaluation of physico-chemical and antioxidant properties of dairy cows milk in two different seasons in Jammu Division, India. In Proceedings of National Conference. 2019.

Brand-Williams W, Cuvelier M-E, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol. 1995;28(1):25–30.

Article  CAS  Google Scholar 

Sirivibulkovit K, Nouanthavong S, Sameenoi Y. based DPPH assay for antioxidant activity analysis. Anal Sci. 2018;34(7):795–800.

Article  CAS  PubMed  Google Scholar 

Aguilar Diaz De Leon J, Borges CR. Evaluation of oxidative stress in biological samples using the thiobarbituric acid reactive substances assay. J Vis Exp. 2020;159:61122.

Google Scholar 

Aitken A, Learmonth M. Estimation of disulfide bonds using Ellman’s reagent. In: The protein protocols handbook. Cham: Springer; 1996. p. 487–8.

Chapter  Google Scholar 

Habeeb A. Reaction of protein sulfhydryl groups with Ellman’s reagent. In: Methods in enzymology. New York: Elsevier; 1972. p. 457–64.

Google Scholar 

Butts CA, et al. Human milk composition and dietary intakes of breastfeeding women of different ethnicity from the Manawatu–Wanganui region of New Zealand. Nutrients. 2018;10(9):1231.

Article  PubMed  PubMed Central  Google Scholar 

Jensen RG. The lipids in human milk. Prog Lipid Res. 1996;35(1):53–92.

Article  CAS  PubMed  Google Scholar 

Al-Awadi FM, Srikumar T. Trace-element status in milk and plasma of Kuwaiti and non-Kuwaiti lactating mothers. Nutrition. 2000;16(11–12):1069–73.

Article  CAS  PubMed  Google Scholar 

Dodge M, et al. Glutathione peroxidase activity modulates fatty acid profiles of plasma and breast milk in Chinese women. J Trace Elem Med Biol. 1999;12(4):221–30.

Article  CAS  PubMed  Google Scholar 

Compagnoni G, et al. CoQ10 plasmatic levels in breast-fed infants compared to formula-fed infants. Neonatology. 2004;86(3):165–9.

Article  CAS  Google Scholar 

Cervato RC, Benvenuto Cestaro G. Studies on the antioxidant activity of milk caseins. Int J Food Sci Nutr. 1999;50(4):291–6.

Article  CAS  PubMed  Google Scholar 

Cena H, Calder PC. Defining a healthy diet: evidence for the role of contemporary dietary patterns in health and disease. Nutrients. 2020;12(2):334.

Article  PubMed  PubMed Central  Google Scholar 

Bruce B, et al. A diet high in whole and unrefined foods favorably alters lipids, antioxidant defenses, and colon function. J Am Coll Nutr. 2000;19(1):61–7.

Article  CAS  PubMed  Google Scholar 

Johnston C. Functional foods as modifiers of cardiovascular disease. Am J Lifestyle Med. 2009;3(1_Suppl):39S-43S.

Article  PubMed  Google Scholar 

Blades B, Garg A. Mechanisms of increase in plasma triacylglycerol concentrations as a result of high carbohydrate intakes in patients with non-insulin-dependent diabetes mellitus. Am J Clin Nutr. 1995;62(5):996–1002.

Article  CAS  PubMed  Google Scholar 

Kok SW, et al. Hypocretin deficiency in narcoleptic humans is associated with abdominal obesity. Obes Res. 2003;11(9):1147–54.

Article  CAS  PubMed  Google Scholar 

Salminen A, Kaarniranta K, Kauppinen A. Crosstalk between oxidative stress and SIRT1: impact on the aging process. Int J Mol Sci. 2013;14(2):3834–59.

留言 (0)

沒有登入
gif