Mitochondrial stress induces hepatic stellate cell activation in response to the ATF4/TRIB3 pathway stimulation

Asrani SK, Devarbhavi H, Eaton J, et al. Burden of liver diseases in the world. J Hepatol. 2019;70:151–71.

Article  PubMed  Google Scholar 

Higashi T, Friedman SL, Hoshida Y. Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev. 2017;121:27–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hubbers A, Hennings J, Lambertz D, et al. Pharmacological inhibition of cyclin-dependent kinases triggers anti-fibrotic effects in hepatic stellate cells in vitro. Int J Mol Sci. 2020;21:3267.

Article  PubMed  PubMed Central  Google Scholar 

Barry AE, Baldeosingh R, Lamm R, et al. Hepatic stellate cells and hepatocarcinogenesis. Front Cell Dev Biol. 2020;8:709.

Article  PubMed  PubMed Central  Google Scholar 

Harding HP, Zhang Y, Zeng H, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11:619–33.

Article  CAS  PubMed  Google Scholar 

Novoa I, Zhang Y, Zeng H, et al. Stress-induced gene expression requires programmed recovery from translational repression. EMBO J. 2003;22:1180–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iwasaki Y, Suganami T, Hachiya R, et al. Activating transcription factor 4 links metabolic stress to interleukin-6 expression in macrophages. Diabetes. 2014;63:152–61.

Article  CAS  PubMed  Google Scholar 

Zhao E, Ding J, Xia Y, et al. KDM4C and ATF4 cooperate in transcriptional control of amino acid metabolism. Cell Rep. 2016;14:506–19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bretin A, Carriere J, Dalmasso G, et al. Activation of the EIF2AK4-EIF2A/eIF2alpha-ATF4 pathway triggers autophagy response to Crohn disease-associated adherent-invasive Escherichia coli infection. Autophagy. 2016;12:770–83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng J, Yuan F, Guo Y, et al. Deletion of ATF4 in AgRP neurons promotes fat loss mainly via increasing energy expenditure. Diabetes. 2017;66:640–50.

Article  CAS  PubMed  Google Scholar 

Li K, Xiao Y, Yu J, Xia T, Liu B, Guo Y, Deng J, Chen S, Wang C, Guo F. Liver-specific gene inactivation of the transcription factor ATF4 alleviates alcoholic liver steatosis in mice. J Biol Chem. 2016;291:18536–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun X, Liu J, Crary JF, et al. ATF4 protects against neuronal death in cellular Parkinson’s disease models by maintaining levels of parkin. J Neurosci. 2013;33:2398–407.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baleriola J, Walker CA, Jean YY, et al. Axonally synthesized ATF4 transmits a neurodegenerative signal across brain regions. Cell. 2014;158:1159–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang Q, Liu T, Guo T, et al. ATF4 promotes renal tubulointerstitial fibrosis by suppressing autophagy in diabetic nephropathy. Life Sci. 2021;264: 118686.

Article  CAS  PubMed  Google Scholar 

O’Leary EM, Tian Y, Nigdelioglu R, et al. TGF-beta promotes metabolic reprogramming in lung fibroblasts via mTORC1-dependent ATF4 activation. Am J Respir Cell Mol Biol. 2020;63:601–12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ord D, Ord T. Characterization of human NIPK (TRB3, SKIP3) gene activation in stressful conditions. Biochem Biophys Res Commun. 2005;330:210–8.

Article  PubMed  Google Scholar 

Zhang XW, Zhou JC, Peng D, et al. Disrupting the TRIB3-SQSTM1 interaction reduces liver fibrosis by restoring autophagy and suppressing exosome-mediated HSC activation. Autophagy. 2020;16:782–96.

Article  CAS  PubMed  Google Scholar 

Tomcik M, Palumbo-Zerr K, Zerr P, et al. Tribbles homologue 3 stimulates canonical TGF-beta signalling to regulate fibroblast activation and tissue fibrosis. Ann Rheum Dis. 2016;75:609–16.

Article  CAS  PubMed  Google Scholar 

Richmond L, Keeshan K. Pseudokinases: a tribble-edged sword. FEBS J. 2020;287:4170–82.

Article  CAS  PubMed  Google Scholar 

Izrailit J, Jaiswal A, Zheng W, et al. Cellular stress induces TRB3/USP9x-dependent Notch activation in cancer. Oncogene. 2017;36:1048–57.

Article  CAS  PubMed  Google Scholar 

Yu JM, Sun W, Wang ZH, et al. TRIB3 supports breast cancer stemness by suppressing FOXO1 degradation and enhancing SOX2 transcription. Nat Commun. 2019;10:5720.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eyers PA, Keeshan K, Kannan N. Tribbles in the 21st century: the evolving roles of tribbles pseudokinases in biology and disease. Trends Cell Biol. 2017;27:284–98.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Melber A, Haynes CM. UPR(mt) regulation and output: a stress response mediated by mitochondrial-nuclear communication. Cell Res. 2018;28:281–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smyrnias I. The mitochondrial unfolded protein response and its diverse roles in cellular stress. Int J Biochem Cell Biol. 2021;133: 105934.

Article  CAS  PubMed  Google Scholar 

Grattagliano I, Russmann S, Diogo C, et al. Mitochondria in chronic liver disease. Curr Drug Targets. 2011;12:879–93.

Article  CAS  PubMed  Google Scholar 

Du K, Hyun J, Premont RT, et al. Hedgehog-YAP signaling pathway regulates glutaminolysis to control activation of hepatic stellate cells. Gastroenterology. 2018;154:1465–79.

Article  CAS  PubMed  Google Scholar 

Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 2017;14:397–411.

Article  CAS  PubMed  Google Scholar 

Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol. 2021;18:151–66.

Article  PubMed  Google Scholar 

Parola M, Pinzani M. Liver fibrosis: pathophysiology, pathogenetic targets and clinical issues. Mol Aspects Med. 2019;65:37–55.

Article  CAS  PubMed  Google Scholar 

Iwaisako K, Brenner DA, Kisseleva T. What’s new in liver fibrosis? The origin of myofibroblasts in liver fibrosis. J Gastroenterol Hepatol. 2012;27(Suppl 2):65–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443:787–95.

Article  CAS  PubMed  Google Scholar 

Orrenius S, Gogvadze V, Zhivotovsky B. Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol. 2007;47:143–83.

Article  CAS  PubMed  Google Scholar 

Quiros PM, Mottis A, Auwerx J. Mitonuclear communication in homeostasis and stress. Nat Rev Mol Cell Biol. 2016;17:213–26.

Article  CAS  PubMed  Google Scholar 

Li M, Wang L, Wang Y, et al. Mitochondrial fusion via OPA1 and MFN1 supports liver tumor cell metabolism and growth. Cells-Basel. 2020;9:121.

Article  CAS  Google Scholar 

Zhao Q, Liu J, Deng H, et al. Targeting mitochondria-located circRNA SCAR alleviates NASH via reducing mROS output. Cell. 2020;183:76–93.

Article  CAS  PubMed  Google Scholar 

Shpilka T, Haynes CM. The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat Rev Mol Cell Biol. 2018;19:109–20.

Article  CAS  PubMed  Google Scholar 

Faletti S, Osti D, Ceccacci E, et al. LSD1-directed therapy affects glioblastoma tumorigenicity by deregulating the protective ATF4-dependent integrated stress response. Sci Transl Med. 2021;13: f7036.

Article 

留言 (0)

沒有登入
gif