Transmission risk of Oropouche fever across the Americas

Wilson AL, Courtenay O, Kelly-Hope LA, Scott TW, Takken W, Torr SJ, et al. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl Trop Dis. 2020;14: e0007831.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Macdonald AJ, Mordecai EA. Amazon deforestation drives malaria transmission, and malaria burden reduces forest clearing. Proc Natl Acad Sci USA. 2020;116:22212–8.

Article  Google Scholar 

Vasconcelos PFC, Calisher CH. Emergence of human arboviral diseases in the Americas, 2000–2016. Vector-Borne Zoonotic Dis. 2016;16:295–301.

Article  PubMed  Google Scholar 

Romero-Alvarez D, Escobar LE. Oropouche fever, an emergent disease from the Americas. Microbes Infect. 2017;20:135–46.

Article  PubMed  Google Scholar 

Durango-Chavez HV, Toro-Huamanchumo CJ, Silva-Caso W, Martins-Luna J, Aguilar-Luis MA, del Valle-Mendoza J, et al. Oropouche virus infection in patients with acute febrile syndrome: is a predictive model based solely on signs and symptoms useful? PLoS ONE. 2022;17: e0270294.

Article  CAS  PubMed  PubMed Central  Google Scholar 

da Rosa JFT, de Souza WM, de Paula PF, Figueiredo ML, Cardoso JF, Acrani GO, et al. Oropouche virus: clinical, epidemiological, and molecular aspects of a neglected Orthobunyavirus. Am J Trop Med Hyg. 2017;96:1019–30.

Google Scholar 

Gorris ME, Bartlow AW, Temple SD, Romero-Alvarez D, Shutt DP, Fair JM, et al. Updated distribution maps of predominant Culex mosquitoes across the Americas. Parasit Vectors. 2021;14:547.

Article  PubMed  PubMed Central  Google Scholar 

Cardoso BF, Serra OP, Da Silva Heinen LB, Zuchi N, De Souza VC, Naveca FG, et al. Detection of Oropouche virus segment S in patients and in Culex quinquefasciatus in the state of Mato Grosso. Brazil Mem Inst Oswaldo Cruz. 2015;110:745–54.

Article  CAS  PubMed  Google Scholar 

McGregor BL, Connelly CR, Kenney JL. Infection, dissemination, and transmission potential of North American Culex quinquefasciatus, Culex tarsalis, and Culicoides sonorensis for Oropouche virus. Viruses. 2021;13:226.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gutierrez B, Wise EL, Pullan ST, Logue CH, Bowden TA, Escalera-Zamudio M, et al. Evolutionary dynamics of Oropouche virus in South America. J Virol. 2019;94:e01127-e1219.

Google Scholar 

Peterson AT. Mapping disease transmission risk: enriching models using biogeography and ecology. Baltimore: Johns Hopkins University Press; 2014.

Book  Google Scholar 

Escobar LE. Ecological niche modeling: an introduction for veterinarians and epidemiologists. Front Vet Sci. 2020;7: 519059.

Article  PubMed  PubMed Central  Google Scholar 

Feng X, Park DS, Walker C, Peterson AT, Merow C, Papeş M. A checklist for maximizing reproducibility of ecological niche models. Nat Ecol Evol. 2019;3:1382–95.

Article  PubMed  Google Scholar 

Peterson AT, Soberón J. Species distribution modeling and ecological niche modeling: getting the concepts right. Nat a Conserv. 2012;10:102–7.

Article  Google Scholar 

Sillero N, Barbosa AM. Common mistakes in ecological niche models. Int J Geogr Inf Sci. 2021;35:213–26.

Article  Google Scholar 

Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, et al. Ecological niches and geographic distributions. New Jersey: Princeton University Press; 2011.

Book  Google Scholar 

Fonseca LMDS, Carvalho RH, Bandeira AC, Sardi SI, Campos GS. Oropouche virus detection in febrile patients’ saliva and urine samples in Salvador, Bahia. Brazil Jpn J Infect Dis. 2020;73:164–5.

Article  PubMed  Google Scholar 

Alva-Urcia C, Aguilar-Luis MA, Palomares-Reyes C, Silva-Caso W, Suarez-Ognio L, Weilg P, et al. Emerging and reemerging arboviruses: a new threat in Eastern Peru. PLoS ONE. 2017;12: e0187897.

Article  PubMed  PubMed Central  Google Scholar 

Wise EL, Pullan ST, Márquez S, Paz V, Mosquera JD, Zapata S, et al. Isolation of Oropouche virus from febrile patient. Ecuador. 2018;24:935–7.

Google Scholar 

Silva-Caso W, Aguilar-Luis MA, Palomares-Reyes C, Mazulis F, Weilg C, del Valle LJ, et al. First outbreak of Oropouche fever reported in a non-endemic western region of the Peruvian Amazon: molecular diagnosis and clinical characteristics. Int J Infect Dis. 2019;83:139–44.

Article  PubMed  Google Scholar 

Martins-Luna J, del Valle-Mendoza J, Silva-Caso W, Sandoval I, del Valle LJ, Palomares-Reyes C, et al. Oropouche infection a neglected arbovirus in patients with acute febrile illness from the Peruvian coast. BMC Res Notes. 2020;13:67.

Article  PubMed  PubMed Central  Google Scholar 

Sakkas H, Bozidis P, Franks A, Papadopoulou C. Oropouche fever: a review. Viruses. 2018;10:175.

Article  PubMed  PubMed Central  Google Scholar 

Johnson EE, Escobar LE, Zambrana-Torrelio C. An ecological framework for modeling the geography of disease transmission. Trends Ecol Evol. 2019;34:655–68.

Article  PubMed  PubMed Central  Google Scholar 

Veloz SD. Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. J Biogeogr. 2009;36:2290–9.

Article  Google Scholar 

Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography. 2015;38:541–5.

Article  Google Scholar 

Vega GC, Pertierra LR, Olalla-Táraga MÁ. MERRAclim, a high-resolution global dataset of remotely sensed bioclimatic variables for ecological modelling. Sci Data. 2017;4: 170078.

Article  Google Scholar 

Booth TH. Checking bioclimatic variables that combine temperature and precipitation data before their use in species distribution models. Austral Ecol. 2022;47:1506–14.

Article  Google Scholar 

Mordecai EA, Caldwell JM, Grossman MK, Lippi CA, Johnson LR, Neira M, et al. Thermal biology of mosquito-borne disease. Ecol Lett. 2019;22:1690–708.

Article  PubMed  PubMed Central  Google Scholar 

Araújo MB, Ferri-Yáñez F, Bozinovic F, Chown SL, Marquet PA. Heat freezes niche evolution Ecol lett. 2013;16:1206–19.

PubMed  Google Scholar 

Caldwell JM, LaBeaud AD, Lambin EF, Stewart-Ibarra AM, Ndenga BA, Mutuku FM, et al. Climate explains geographic and temporal variation in mosquito-borne disease dynamics on two continents. Nat Commun. 2020;12:123.

Google Scholar 

Aybar CAV, Juri MJD, De GMSL, Spinelli GR. Spatial and temporal distribution of Culicoides insignis and Culicoides paraensis in the subtropical mountain forest of Tucumán, northwestern Argentina. Florida Entomol. 2011;94:1018–25.

Article  Google Scholar 

Demšar U, Harris P, Brunsdon C, Fotheringham AS, McLoone S. Principal component analysis on spatial data: an overview. Ann Assoc Am Geogr. 2013;103:106–28.

Article  Google Scholar 

Cobos ME, Peterson AT, Barve N, Osorio-Olvera L. kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ. 2019;7: e6281.

Article  PubMed  PubMed Central  Google Scholar 

Cooper JC, Soberón J. Creating individual accessible area hypotheses improves stacked species distribution model performance. Glob Ecol Biogeogr. 2018;27:156–65.

Article  Google Scholar 

Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Modell. 2011;222:1810–9.

Article  Google Scholar 

Jiménez L, Soberón J. Leaving the area under the receiving operating characteristic curve behind: an evaluation method for species distribution modeling applications based on presence-only data. Methods Ecol Evol. 2020;11:1571–86.

Article  Google Scholar 

Peterson AT, Papeş M, Soberón J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Modell. 2008;213:63–72.

Article  Google Scholar 

García-Roselló E, Guisande C, González-Vilas L, González-Dacosta J, Heine J, Pérez-Costas E, et al. A simple method to estimate the probable distribution of species. Ecography. 2019;42:1613–22.

Article  Google Scholar 

Simões M, Romero-Alvarez D, Nuñez-Penichet C, Jiménez L, Cobos ME. General theory and good practices in ecological niche modeling: a basic guide. Biodivers Informatics. 2020;15:67–8.

Article  Google Scholar 

Machado-Stredel F, Cobos ME, Peterson AT. A simulation-based method for selecting calibration areas for ecological niche models and species distribution models. Front Biogeogr. 2021;13(4): e48814.

Article  Google Scholar 

Poo-Muñoz DA, Escobar LE, Peterson AT, Astorga F, Organ JF, Medina-Vogel G. Galictis cuja (Mammalia): an update of current knowledge and geographic distribution. Iheringia Série Zool. 2014;104:341–6.

Article  Google Scholar 

Blonder B, Morrow CB, Maitner B, Harris DJ, Lamanna C, Violle C, et al. New approaches for delineating n-dimensional hypervolumes. Methods Ecol Evol. 2018;9:305–19.

Article  Google Scholar 

Blonder B, Morrow CB, Harris DJ, Brown S, Butruille G, Laini A, et al. Package “hypervolume”. 2019. [Internet]. https://cran.r-project.org/web/packages/hypervolume/hypervolume.pdf. Accessed 21 Jul 2022.

Roussel J-R, Barber CB, Habel K, Grassman R, Gramacy RB, Mozharovskyi P, et al. Package ‘geometry’. 2022. [Internet]. https://cran.r-project.org/web/packages/geometry/geometry.pdf. Accessed 21 Jul 2022.

Colwell RK, Rangel TF. Hutchinson’s duality: the once and future niche. Proc Natl Acad Sci USA. 2009;106:19651–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Owens HL, Campbell LP, Dornak LL, Saupe EE, Barve N, Soberón J, et al. Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecol Modell. 2013;263:10–8.

Article 

留言 (0)

沒有登入
gif