Ensemble determination by NMR data deconvolution

Huang, Z. H., Grape, E. S., Li, J., Inge, A. K. & Zou, X. D. 3D electron diffraction as an important technique for structure elucidation of metal–organic frameworks and covalent organic frameworks. Coord. Chem. Rev. 427, 213583 (2021).

Article  CAS  Google Scholar 

Kuntz, I. D. Structure-based strategies for drug design and discovery. Science 257, 1078–1082 (1992).

Article  CAS  PubMed  Google Scholar 

Miller, R. J. D. Femtosecond crystallography with ultrabright electrons and X-rays: capturing chemistry in action. Science 343, 1108–1116 (2014).

Article  CAS  PubMed  Google Scholar 

Danelius, E. et al. Solution conformations explain the chameleonic behaviour of macrocyclic drugs. Chem. Eur. J. 26, 5231–5244 (2020).

Article  CAS  PubMed  Google Scholar 

Ermondi, G. et al. Managing experimental 3D structures in the beyond-rule-of-5 chemical space: the case of rifampicin. Chem. Eur. J. 27, 10394–10404 (2021).

Article  CAS  PubMed  Google Scholar 

Haubrich, K., Spiteri, V. A., Farnaby, W., Sobott, F. & Ciulli, A. Breaking free from the crystal lattice: structural biology in solution to study protein degraders. Curr. Opin. Struct. Biol. 79, 102534 (2023).

Article  CAS  PubMed  Google Scholar 

Pradeilles, J. A. et al. Odd–even alternations in helical propensity of a homologous series of hydrocarbons. Nat. Chem. 12, 475–480 (2020).

Article  CAS  PubMed  Google Scholar 

Bohle, F. & Grimme, S. Hydrocarbon macrocycle conformer ensembles and 13C-NMR spectra. Angew. Chem. Int. Ed. 61, e202113905 (2022).

Article  CAS  Google Scholar 

Dickman, R. et al. A chemical biology approach to understanding molecular recognition of lipid II by Nisin(1–12): synthesis and NMR ensemble analysis of Nisin(1–12) and analogues. Chem. Eur. J. 25, 14572–14582 (2019).

Article  CAS  PubMed  Google Scholar 

Hagele, G. NMR controlled titrations characterizing organophosphorus compounds. Phosphorus Sulfur Silicon Relat. Elem. 194, 361–363 (2019).

Article  Google Scholar 

Kolmer, A., Edwards, L. J., Kuprov, I. & Thiele, C. M. Conformational analysis of small organic molecules using NOE and RDC data: a discussion of strychnine and α-methylene-γ-butyrolactone. J. Magn. Res. 261, 101–109 (2015).

Article  CAS  Google Scholar 

Navarro-Vázquez, A., Gil, R. R. & Blinov, K. Computer-assisted 3D structure elucidation (CASE-3D) of natural products combining isotropic and anisotropic NMR parameters. J. Nat. Prod. 81, 203–210 (2018).

Article  PubMed  Google Scholar 

Peintner, S. & Erdélyi, M. Pushing the limits of characterising a weak halogen bond in solution. Chem. Eur. J. 28, e202103559 (2022).

Article  CAS  PubMed  Google Scholar 

Slabber, C. A., Grimmer, C. D. & Robinson, R. S. Solution conformations of curcumin in DMSO. J. Nat. Prod. 79, 2726–2730 (2016).

Article  CAS  PubMed  Google Scholar 

Teilum, K., Kunze, M. B., Erlendsson, S. & Kragelund, B. B. (S)Pinning down protein interactions by NMR. Protein Sci. 26, 436–451 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, J. et al. Synergy of synthesis, computation and NMR reveals correct baulamycin structures. Nature 547, 436–440 (2017).

Article  CAS  PubMed  Google Scholar 

Kwan, E. E. & Huang, S. G. Structural elucidation with NMR spectroscopy: practical strategies for organic chemists. Eur. J. Org. Chem. 2008, 2671–2688 (2008).

Article  Google Scholar 

Bell, R. A. & Saunders, J. K. Correlation of intramolecular nuclear Overhauser effect with internuclear distance. Can. J. Chem. 48, 1114–1122 (1970).

Article  CAS  Google Scholar 

Overhauser, A. W. Polarization of nuclei in metals. Phys. Rev. 92, 411–415 (1953).

Article  CAS  Google Scholar 

Schirmer, R. E., Noggle, J. H., Davis, J. P. & Hart, P. A. Determination of molecular geometry by quantitative application of nuclear overhauser effect. J. Am. Chem. Soc. 92, 3266–3273 (1970).

Article  CAS  Google Scholar 

Slichter, C. P. The discovery and demonstration of dynamic nuclear polarization — a personal and historical account. Phys. Chem. Chem. Phys. 12, 5741–5751 (2010).

Article  CAS  PubMed  Google Scholar 

Karplus, M. Contact electron–spin coupling of nuclear magnetic moments. J. Chem. Phys. 30, 11–15 (1959).

Article  CAS  Google Scholar 

Haasnoot, C. A. G., De Leeuw, F. A. A. M. & Altona, C. The relationship between proton–proton NMR coupling-constants and substituent electronegativities — an empirical generalization of the Karplus equation. Tetrahedron 36, 2783–2792 (1980).

Article  CAS  Google Scholar 

Liu, Y. Z. et al. Application of anisotropic NMR parameters to the confirmation of molecular structure. Nat. Protoc. 14, 217–247 (2019).

Article  CAS  PubMed  Google Scholar 

Müntener, T., Joss, D., Häussinger, D. & Hiller, S. Pseudocontact shifts in biomolecular NMR spectroscopy. Chem. Rev. 122, 9422–9467 (2022).

Article  PubMed  Google Scholar 

Nitsche, C. & Otting, G. Pseudocontact shifts in biomolecular NMR using paramagnetic metal tags. Prog. Nucl. Magn. Reson. Spectrosc. 9899, 20–49 (2017).

Article  PubMed  Google Scholar 

Pons, M. & Millet, O. Dynamic NMR studies of supramolecular complexes. Prog. Nucl. Magn. Reson. Spectrosc. 38, 267–324 (2001).

Article  CAS  Google Scholar 

Bryant, R. G. The NMR time scale. J. Chem. Educ. 60, 933–935 (1983).

Article  CAS  Google Scholar 

Pearlman, D. A. FINGAR: a new genetic algorithm-based method for fitting NMR data. J. Biomol. NMR 8, 49–66 (1996).

Article  CAS  PubMed  Google Scholar 

Wang, J. J., Hodges, R. S. & Sykes, B. D. Generating multiple conformations of flexible peptides in solution based on NMR nuclear Overhauser effect data — application to desmopressin. J. Am. Chem. Soc. 117, 8627–8634 (1995).

Article  CAS  Google Scholar 

Wang, S. et al. Incorporating NOE-derived distances in conformer generation of cyclic peptides with distance geometry. J. Chem. Inf. Model. 62, 472–485 (2022).

Article  CAS  PubMed  Google Scholar 

Güntert, P., Braun, W. & Wüthrich, K. Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J. Mol. Biol. 217, 517–530 (1991).

Article  PubMed  Google Scholar 

Wüthrich, K. NMR of Proteins and Nucleic Acids: 3 (Baker Lecture Series) Vol. 32 (John Wiley & Sons, 1986).

Sattler, M. & Fesik, S. W. Resolving resonance overlap in the NMR spectra of proteins from differential lanthanide-induced shifts. J. Am. Chem. Soc. 119, 7885–7886 (1997).

Article  CAS  Google Scholar 

Speciale, I. et al. Liquid-state NMR spectroscopy for complex carbohydrate structural analysis: a Hitchhiker’s guide. Carbohyd. Polym. 277, 118885 (2022).

Article  CAS  Google Scholar 

Varani, G., Aboulela, F. & Allain, F. H. T. NMR investigation of RNA structure. Prog. Nucl. Magn. Reson. Spectrosc. 29, 51–127 (1996).

Article  CAS  Google Scholar 

Atilaw, Y. et al. Solution conformations shed light on PROTAC cell permeability. ACS Med. Chem. Lett. 12, 107–114 (2021).

Article  CAS  PubMed  Google Scholar 

Poongavanam, V. et al. Linker-dependent folding rationalizes PROTAC cell permeability. J. Med. Chem. 65, 13029–13040 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hussain, A., Paukovich, N., Henen, M. A. & Vögeli, B. Advances in the exact nuclear Overhauser effect 2018–2022. Methods 206, 87–98 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vögeli, B. The nuclear Overhauser effect from a quantitative perspective. Prog. Nucl. Magn. Reson. Spectrosc. 78, 1–46 (2014).

Article  CAS  PubMed  Google Scholar 

Vögeli, B., Olsson, S., Guntert, P. & Riek, R. The exact NOE as an alternative in ensemble structure determination. Biophys. J. 110, 113–126 (2016). This paper discusses ensemble determination in the context of proteins.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keepers, J. W. & James, T. L. A theoretical study of distance determinations from NMR. Two-dimensional nuclear Overhauser effect spectra. J. Magn. Res. 57,

留言 (0)

沒有登入
gif