Synthesis and applications of mirror-image proteins

Pasteur, L. Mémoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarisation rotatoire. C. R. Acad. Sci. 26, 535–538 (1848).

Google Scholar 

Snelders, H. A. M. in van’t Hoff-Le Bel Centennial Vol. 12, Ch. 5, 66–73 (American Chemical Society, 1975).

Cahn, R. S. & Ingold, C. K. Specification of configuration about quadricovalent asymmetric atoms. J. Chem. Soc. 131, 612–622 (1951).

Article  Google Scholar 

Rosanoff, M. A. On Fischer’s classification of stereo-isomers. J. Am. Chem. Soc. 28, 114–121 (1906).

Article  CAS  Google Scholar 

Blackmond, D. G. The origin of biological homochirality. Cold Spring Harb. Perspect. Biol. 11, a032540 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie, J. & Schultz, P. G. A chemical toolkit for proteins — an expanded genetic code. Nat. Rev. Mol. Cell Biol. 7, 775–782 (2006).

Article  CAS  PubMed  Google Scholar 

Rosano, G. L., Morales, E. S. & Ceccarelli, E. A. New tools for recombinant protein production in Escherichia coli: a 5‐year update. Protein Sci. 28, 1412–1422 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wright, T. H., Vallée, M. R. J. & Davis, B. G. From chemical mutagenesis to post‐expression mutagenesis: a 50 year odyssey. Angew. Chem. Int. Ed. 55, 5896–5903 (2016).

Article  CAS  Google Scholar 

Noren, C. J., Anthony-Cahill, S. J., Griffith, M. C. & Schultz, P. G. A general method for site-specific incorporation of unnatural amino acids into proteins. Science 244, 182–188 (1989).

Article  CAS  PubMed  Google Scholar 

Kreil, G. Conversion of l- to d-amino acids: a posttranslational reaction. Science 266, 996–997 (1994).

Article  CAS  PubMed  Google Scholar 

Mor, A., Amiche, M. & Nicolas, P. Enter a new post-translational modification: d-amino acids in gene-encoded peptides. Trends Biochem. Sci. 17, 481–485 (1992).

Article  CAS  PubMed  Google Scholar 

Liu, W. R., Wang, Y.-S. & Wan, W. Synthesis of proteins with defined posttranslational modifications using the genetic noncanonical amino acid incorporation approach. Mol. Biosyst. 7, 38–47 (2011).

Article  CAS  PubMed  Google Scholar 

Zhao, L. & Lu, W. Mirror image proteins. Curr. Opin. Chem. Biol. 22, 56–61 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abboud, S. A., Cisse, E. H., Doudeau, M., Bénédetti, H. & Aucagne, V. A straightforward methodology to overcome solubility challenges for N-terminal cysteinyl peptide segments used in native chemical ligation. Chem. Sci. 12, 3194–3201 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giesler, R. J., Erickson, P. W. & Kay, M. S. Enhancing native chemical ligation for challenging chemical protein syntheses. Curr. Opin. Chem. Biol. 58, 37–44 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fuchs, O., Trunschke, S., Hanebrink, H., Reimann, M. & Seitz, O. Enabling cysteine‐free native chemical ligation at challenging junctions with a ligation auxiliary capable of base catalysis. Angew. Chem. Int. Ed. 60, 19483–19490 (2021).

Article  CAS  Google Scholar 

Mitchell, N. J. et al. Rapid additive-free selenocystine–selenoester peptide ligation. J. Am. Chem. Soc. 137, 14011–14014 (2015).

Article  CAS  PubMed  Google Scholar 

Zhang, Y., Xu, C., Lam, H. Y., Lee, C. L. & Li, X. Protein chemical synthesis by serine and threonine ligation. Proc. Natl Acad. Sci. USA 110, 6657–6662 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bang, D., Pentelute, B. L. & Kent, S. B. H. Kinetically controlled ligation for the convergent chemical synthesis of proteins. Angew. Chem. Int. Ed. 45, 3985–3988 (2006).

Article  CAS  Google Scholar 

Hackenberger, C. P. R. & Schwarzer, D. Chemoselective ligation and modification strategies for peptides and proteins. Angew. Chem. Int. Ed. 47, 10030–10074 (2008).

Article  CAS  Google Scholar 

Saxon, E., Armstrong, J. I. & Bertozzi, C. R. A ‘traceless’ Staudinger ligation for the chemoselective synthesis of amide bonds. Org. Lett. 2, 2141–2143 (2000).

Article  CAS  PubMed  Google Scholar 

Muir, T. W., Sondhi, D. & Cole, P. A. Expressed protein ligation: a general method for protein engineering. Proc. Natl Acad. Sci. USA 95, 6705–6710 (1998).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao, X., Ma, Q. & Zhu, H. Distribution, industrial applications, and enzymatic synthesis of d-amino acids. Appl. Microbiol. Biotechnol. 99, 3341–3349 (2015).

Article  CAS  PubMed  Google Scholar 

Zhang, D.-P. et al. Highly selective synthesis of d-amino acids via stereoinversion of corresponding counterpart by an in vivo cascade cell factory. Microb. Cell Fact. 20, 11 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Milton, R., Milton, S. & Kent, S. Total chemical synthesis of a d-enzyme: the enantiomers of HIV-1 protease show reciprocal chiral substrate specificity [corrected]. Science 256, 1445–1448 (1992). This publication marked the landmark synthesis of a mirror-image protein and provided critical experimental evidence demonstrating reciprocal chiral specificity of proteins.

Article  CAS  PubMed  Google Scholar 

Weinstock, M. T., Jacobsen, M. T. & Kay, M. S. Synthesis and folding of a mirror-image enzyme reveals ambidextrous chaperone activity. Proc. Natl Acad. Sci. USA 111, 11679–11684 (2014). This pivotal work pushed the frontier of chemical protein synthesis and uncovered the ambidextrous folding ability of the GroEL–ES chaperone, priming the field for development of a generalizable strategy for folding mirror-image proteins.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petersen, M. E., Jacobsen, M. T. & Kay, M. S. Synthesis of tumor necrosis factor α for use as a mirror-image phage display target. Org. Biomol. Chem. 14, 5298–5303 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feldmann, M. & Maini, R. N. TNF defined as a therapeutic target for rheumatoid arthritis and other autoimmune diseases. Nat. Med. 9, 1245–1250 (2003).

Article  CAS  PubMed  Google Scholar 

Levinson, A. M. et al. Total chemical synthesis and folding of all-l and all-d variants of oncogenic KRas(G12V). J. Am. Chem. Soc. 139, 7632–7639 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilson, R. M. et al. A fascinating journey into history: exploration of the world of isonitriles en route to complex amides. Angew. Chem. Int. Ed. 51, 2834–2848 (2012).

Article  CAS  Google Scholar 

Noguchi, T. et al. Synthesis of Grb2 SH2 domain proteins for mirror-image screening systems. Bioconjug. Chem. 28, 609–619 (2017).

Article  CAS  PubMed  Google Scholar 

Schmidt, N., Abendroth, F., Vázquez, O. & Hantschel, O. Synthesis of the l- and d-SH2 domain of the leukaemia oncogene Bcr-Abl. RSC Chem. Biol. 3, 1008–1012 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Rosa, L., Di Stasi, R. & D’Andrea, L. D. Total chemical synthesis by native chemical ligation of the all-d immunoglobulin-like domain 2 of Axl. Tetrahedron 75, 894–905 (2019).

Article  Google Scholar 

Callahan, A. J. et al. Single-shot flow synthesis of d-proteins for mirror-image phage display. ChemRxiv https://doi.org/10.26434/chemrxiv-2023-x86xp (2023).

Article  Google Scholar 

Kent, S. B. H. Novel protein science enabled by total chemical synthesis. Protein Sci. 28, 313–328 (2019).

Article  CAS  PubMed  Google Scholar 

Yeung, H. et al. Radiation damage and racemic protein crystallography reveal the unique structure of the GASA/snakin protein superfamily. Angew. Chem. Int. Ed. 55, 7930–7933 (2016).

Article  CAS  Google Scholar 

Hung, L.-W., Kohmura, M., Ariyoshi, Y. & Kim, S.-H. Structural differences in d and l-monellin in the crystals of racemic mixture. J. Mol. Biol. 285, 311–321 (1999).

Article  CAS  PubMed  Google Scholar 

Payne, C. D. et al. Solution NMR and racemic crystallography provide insights into a novel structural class of cyclic plant peptides. RSC Chem. Biol. 2, 1682–1691 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Avital-Shmilovici, M. et al. Fully convergent chemical synthesis of ester insulin: determination of the high resolution X-ray structure by racemic protein crystallography. J. Am. Chem. Soc. 135, 3173–3185 (2013).

Article  CAS 

留言 (0)

沒有登入
gif